• Title/Summary/Keyword: Evaporation Rate

Search Result 729, Processing Time 0.029 seconds

Measurement of Evaporation Rates for Lanthanum and Neodymium Chlorides

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Chang, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.74-74
    • /
    • 2017
  • Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. Uranium deposit recovered from the solid cathode is a dendritic powder. It is necessary to separate the adhered salt from the deposits prior to the consolidation of uranium deposit. The adhered salt is composed of lithium, potassium, uranium, and rare earth chlorides. Distillation process was employed for the cathode processing. One of the operation methods is distillation of the salt at low temperature ($900^{\circ}C$), and then melting of the deposit at high temperature to avoid a backward reaction. For the development of the salt distiller, the distillation behavior of the low vapor pressure chlorides should be studied. Rare earth chlorides in the adhered salt of uranium deposits have relatively low vapor pressures compared to the process salt (LiCl-KCl). In this study, the evaporation rates of the lanthanum and neodymium chlorides were measured for the salt separation from electrorefiner uranium deposits in the temperature range of $825{\sim}910^{\circ}C$. The evaporation rate of both chlorides increased with an increasing templerature. The evaporation rate of lanthanum chloride varied from 0.12 to $1.68g/cm^2/h$. Neodymium chloride was more volatile than lanthanum chloride. The evaporation rate of neodymium chloride varied from 0.20 to $4.55g/cm^2/h$. The evaporation rate of both chlorides are more than $1g/cm^2/h$ at $900^{\circ}C$. Even though the evaporation rates of both chlorides were less than that of the process salt, the contents of the lanthanide chlorides were small in the adhered salt. Therefore it can be concluded that $900^{\circ}C$ is suitable for the operation temperature of the salt distiller.

  • PDF

Effects of Water Vapor Concentration on a Droplet Evaporation (액적의 증발에 미치는 수증기 농도의 영향)

  • Kim, Y.W.;Lee, M.J.;Ha, J.Y.;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • An experimental study has been conducted to clarify the effect of vapor on droplet evaporation. Droplets of water, ethanol, n-hexadecane and n-heptane were exposed in air stream. Temperature, pressure, and flow velocity in the ambient air are 470K, 1 atm, and 2m/s, respectively. Measurements are carried out for the wide range of water vapor concentration$(0%\sim40%)$. To obtain the time histories of droplet diameter, suspended droplet in hot and humid air stream was synchronized with a back flash light, and enlarged droplet images were taken on a CCD camera. With the vapor concentration increasing, the evaporation rate constant of water droplet decrease slightly and the droplet of ethanol and n-heptane increase actively. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

Study on the dyestuff for acceration solar evaporation (함수의 천일증발촉진성 색소에 관한 시험)

  • 장판섭
    • YAKHAK HOEJI
    • /
    • v.3 no.1
    • /
    • pp.26-34
    • /
    • 1957
  • The solar evaporation method is one of the most important and popular salt manufecturing method in Korea. The rate of evaporation of sea water depends on a complex climate factors. Of these factors, the most important is solar radiation and in particular the extent to which it is absorbed in the brine. By the addition of suitable dyestuff, a further increase in absorption is obtained and can result in all the radiation entering the brine being made available as heat. "Solivap Green", one of several dyestuffs which have been suggested for accelerating solar evaporation, was tested in this experiment. The results of the experiment. 1. Increase the evaporation rate of brine up to 20-25%. 2. Elevate the temperature of brine 2-$4^{\circ}C$. higher than that of brine adding no dyestuff. 3. Optimum dyestuff concentration is 25-30 mg/L and allowable maximum concentration can not exceeded 1000 mg/$m^2$ (50 mg/L). 4. Addition of dyestuff does not cause the degradation of salt produced. 5. A conversion table which indicates the concentrations for various depths of brine was prepared for engineering purpose. 6. Absorption spectrum of the dyestuff was studies, but toxicological and structural studies for the dyestuff have not been done in this experiment.

  • PDF

Experimental Study on Film Boiling of Liquid Droplets on Oxidized Copper Surface (산화 구리표면에서 액적의 막비등에 관한 실험적 연구)

  • Kim, Yeung Chan
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.68-73
    • /
    • 2020
  • In the present study, experiments on the film boiling of liquid droplets on oxidized copper surface was conducted. The shape of pure water droplets was observed, and the evaporation rate of them was measured during the film boiling evaporation process. The droplet of initial volume 16 ~ 30 µl was applied onto the oxidized copper surface heated up to 300 ~ 500℃, then the shape of the droplet was analyzed during the film boiling evaporation. Experimental results showed that there was good correlation between dimensionless volume and dimensionless time. However, a significant difference in evaporation rate for small and large droplets discussed in previous study was not found.

Evaporation Rate of DME in Cargo Storage Tank by Rolling Motion of Ship (DME FPSO 선박의 Rolling 유동에 따른 증발 연구)

  • Yun, Sangkook;Cho, Wonjun;Baek, Youngsoon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.280-280
    • /
    • 2012
  • DME(Dimethyl Ether) is the one of the massive energy sources synthesized from natural gas. KOGAS has already developed the commercial-scale production plant of DME and has been doing to obtain overseas resources to meet the domestic needs. This paper presents an experimental study on the evaporation phenomena of DME in FPSO or cargo vessel. The various moving motions, along with heat intake cause the evaporation of low temperature liquids in vessel's storage tank. The experimental result shows that the evaporation rate was changed with rolling degree and cycle and liquid level. The rolling motion leads to evaporate about 30~35% of total evaporation quantity and the rest amount from heat intake.

  • PDF

-Physical Properties of Metal Thin Film-(Changes of Structure with Evaporation Rates) (금속박막의 물리적 성질(I)(증착속도에 따르는 구조변화))

  • 백수현;조현춘
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.980-985
    • /
    • 1987
  • The thin metal films of Cr, Al, Mn and were made in various evaporation rates with 100\ulcornerthickness under 2x10**-9 bar vacuum level. We analized and discussed the relationships between changes of structure, morphology and sheet resistance, light transmittance for the corresponding evaporation rates. As the evaporation rates were decreased at higher rates, grain sizes of all film were decreased, however both of the sheet resistance and light transmittance were increased. At lower evaporation rate, films of Cr and Cu porduced non-stoi-chiometric oxides but Al an Mn showed up amorphous structures.

  • PDF

A Statistical Approach to Examine the Impact of Various Meteorological Parameters on Pan Evaporation

  • Pandey, Swati;Kumar, Manoj;Chakraborty, Soubhik;Mahanti, N.C.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.515-530
    • /
    • 2009
  • Evaporation from surface water bodies is influenced by a number of meteorological parameters. The rate of evaporation is primarily controlled by incoming solar radiation, air and water temperature and wind speed and relative humidity. In the present study, influence of weekly meteorological variables such as air temperature, relative humidity, bright sunshine hours, wind speed, wind velocity, rainfall on rate of evaporation has been examined using 35 years(1971-2005) of meteorological data. Statistical analysis was carried out employing linear regression models. The developed regression models were tested for goodness of fit, multicollinearity along with normality test and constant variance test. These regression models were subsequently validated using the observed and predicted parameter estimates with the meteorological data of the year 2005. Further these models were checked with time order sequence of residual plots to identify the trend of the scatter plot and then new standardized regression models were developed using standardized equations. The highest significant positive correlation was observed between pan evaporation and maximum air temperature. Mean air temperature and wind velocity have highly significant influence on pan evaporation whereas minimum air temperature, relative humidity and wind direction have no such significant influence.

A Study on the Evaporation and Ignition of Single Fuel Droplet on the Hot Surface (고온벽면에서의 액적연료의 증발 및 착화에 관한 연구)

  • 송규근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.132-137
    • /
    • 2002
  • Recently, impinging spray is used for atomization of diesel engine, but it bring on adhesion of fuel. Therefore, we studied about droplet behavior on high temperature plate changing the size of droplet, surface temperatures, and surface roughness of plate. In this study, We studied to confirm experimentally about mechanism of evaporation and ignition process of single fuel droplet. We observed evaporation time, evaporation appearance and ignition delay time by the photopraphs of 8mm video camera. Experimental results are summarized as follows: 1. The boiling point of fuel affect a evaporation and ignition process. 2. The surface roughness affect a evaporation time. 3. The ignition delay time relate to evaporation characteristic.

Analysis of the Burning Rate of Solid Propellant Accounting for the Evaporation on the Surface (표면 증발을 고려한 고체추진제의 연소율 해석)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • The burning rate of solid propellant is one of the key parameter associated with the dynamic characteristics of combustion and the combustion performances. In the AP propellants, the evaporation on the reacting surface as well as the decomposition of the propellant is of great importance in determining the overall burning rate. In this study, a theoretical analysis was conducted to obtain the expression for burning rate in the steady state combustion with the energy and species equations in the condensed phase when the radiative heat flux partially contributes to the total heat transfer to the propellant surface.

  • PDF

Deposition of Yttria Stabilized Zirconia by the Thermal CVD Process

  • In Deok Jeon;Latifa Gueroudji;Nong M. Hwang
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.131-136
    • /
    • 1999
  • Yttria stabilized zirconia(YSZ) films were deposited on porous NiO substrates and quartz plates by the thermal CVD using $ZrCl_4, YCl_3$ as precursors, and $O_2$ as a reactive gas at atmospheric pressure. The evaporation temperature of $ZrCl_4$ was varied from $250^{\circ}C$ to $550^{\circ}C$ while the temperatures of $YCl_3$ and the substrate were varied from $1000^{\circ}C$ to $1030^{\circ}C$. As the evaporation temperature of $ZrCl_4$ increased, the deposition rate of $ZrO_2$ decreased, contrary to our expectation. As a result of the decreased deposition rate of $ZrO_2$, the yttria content increase. The high evaporation temperature of $ZrCl_4$ makes the well-faceted crystal while the low evaporation temperature leads to the cauliflower-shaped structure. The dependence of the evaporation temperature on the growth rate and the morphological evolution was interpreted by the charged cluster model.

  • PDF