• Title/Summary/Keyword: Evaluation matrix

Search Result 1,158, Processing Time 0.027 seconds

Nondestructive Evaluation and Microfailure Modes of Single Fibers/Cement Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 단섬유시멘트복합재료의 미세파괴구조와 비파괴적 평가)

  • Lee, Sang-Il;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.258-262
    • /
    • 2001
  • The contact resistivity was correlated with IFSS and microfailure modes in conductive fiber/cement composites electro-pullout and AE. As IFSS increased, the number of AE signals increased and the contact resistivity increased latter to the infinity. In dual matrix composite (DMC) test and AE, the number of signals with high amplitude and energy in g]ass fiber composite is significantly larger than that of no-fiber composite. Many vertical and diagonal cracks were observed in glass fiber and no-fiber composite under tensile test, respectively. Electro-micromechanical technique and AE can be used efficiently for sensitive nondestructive (NDT) evaluation and to detect microfailure mechanisms in various conductive fibers reinforced brittle and nontransparent cement composites.

  • PDF

A Model Development of Oriental Nursing Management System Through a Comparative Study of Korea & China (${\cdot}$ 중 비교연구를 통한 한방간호 관리체계 모형개발)

  • Park, Shin-Ae;Kim, Kwang-Joo;Kim, Il-Won;Moon, Heui-Ja
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.10 no.1
    • /
    • pp.121-140
    • /
    • 2004
  • Purpose: This study is to analyse and observe the college of oriental medicine related with nursing investment contents, its conversion process and output to get good qualified oriental nursing result, thus developing a matrix of oriental nursing management system on the basis of that project. Method: This study was nursing management system of matrix developmental study for Korea was performed to the objectives of 11 college of oriental medicine nursing directors and 328 nurses with more than three-year experiences in Korea. Result: We found difficulties to utilize knowledge obtained through the regular curriculum to the practice of oriental nursing because only me or two subjects were running or even no syllabus. Therefore, we recommend that oriental nursing in-service education program as well as oriental nursing practice preceptorship should be administered en site. The evaluation of oriental nursing and its feedback, duty related multiple evaluation, aggressive QI activity and feedback of the performance evaluation oriental nurse's role and duty manual also should be essentially organized. Conclusion: We urgently request that the consensus of nursing school and nurse association to be made about oriental nursing activity as a basic curriculum of compulsive subject.

  • PDF

Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가)

  • Son, Tran-Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

On Enhancing Test and Evaluation Process of Weapon Systems Development using DSM-Based Risk and Safety Management (DSM기법에 의한 위험 및 안전 관리를 통해 무기체계 시험평가 프로세스의 개선에 관한 연구)

  • Sim, Sang Hyun;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • The weapon systems development has some distinct characteristics in that a big size of government budget (derived from national tax) has been expended frequently and the completion of the development projects seems to take long. Thus, the impact of the potential changes in the required operational capability on the development activities can induce some type of project risks. As such, proper management of project risk has been one of crucial subjects in the weapon systems development. Although a variety of methods can be considered, an approach based on the test and evaluation (T&E) process has been selected in this paper in order to appropriately handle those potential risks. In the study of the underlying T&E process, the safety consideration (for instance, explosiveness) of weapon systems is also included. To achieve the objective of the paper, a step-by-step procedure is first presented in the analysis of the T&E process. Then, to pursue some enhancement on the process, a set of necessary and useful activities are added in terms of risk and safety management. The resultant process is further analyzed and tailored based on a design structure matrix method. The case study of a tank development is also discussed.

Development of Dose Evaluation Algorithm for Film Badge Using ISO Reference Radiations (ISO 표준방사선장을 이용한 필름배지의 선량평가 알고리즘 개발)

  • Kim, Jang-Lyul;Chang, Si-Young;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • Since provisions on the technical criteria for personnel dosimetry was amended three years ago, several improvements in the technique of monitoring personnel doses by TLD have taken place, but for the photograpfic film as a personnel monitor, additional investigations should be carried out for its accuracy of dose estimates because of its wide use in the radiation involved industries. So, this paper describes the methods to develope dose evaluation algorithm for photographic film using ISO reference radiations by i) empirical formula, ii) degree-of-fit method, and iii) matrix approximation. These methods show a good agreement between irradiated and calculated dose within tolerance level represented in ANSI N13. 11, and can be used for the dose evaluation of X, ${\gamma}$ and/or radiation fields.

  • PDF

Hydration Properties of High Volume Cement Matrix Using Blast Furnace Slag and Alkaline Aqueous by Electrolysis (고로슬래그 및 전기분해한 알칼리 수용액을 사용한 하이볼륨 시멘트 경화체의 수화특성)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This experimental study is purposed to analyze the effect of alkaline aqueous solution by electrolysis on strength development in order to develop high volume cement matrix using industrial by-products. Blast furnace slag was used a binder, and an alkaline aqueous solution obtained by electrolyzing pure water was used as an alkali activator. The hydration properties of these specimens were then investigated by compressive strength test, XRD and observation of micro-structures using SEM. As a result, we found that compressive strength increased with the addition of alkaline aqueous solution which cement matrix incorporating blast furnace slag. But those strength decreased reversely when replacing ratio of blast furnace slag was increased. It is judged that results of engineering properties evaluation on the binder and alkaline aqueous solution are useful as a basic data for mixtures design and evaluation properties of high volume cement matrix using by-products.

Preparation and in vitro Evaluation of a Buoyant Hydrogel Matrix with Hydroxypropylcellulose and Carbopol (히드록시프로필셀룰로오스와 카르보폴을 이용한 부유성 히드로겔 매트릭스의 제조 및 in Vitro 평가)

  • Kim, Sang-Hun;Lee, Min-Suk;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.2
    • /
    • pp.137-144
    • /
    • 1996
  • The study was carried out for the preparation and evaluation of a buoyant hydrogel matrix (BHM), which is buoyant in a neutral or in pH 2.0 buffer solution, by the aspects of buoyancy, swelling, and drug release. Physical mixtures of HPC and CP in various molar ratio were employed as a mucoadhesive polymer which swells and controls the rate of drug release. Anhydrous citric acid and sodium bicarbonate in the molar ratio of 1:3 were employed as effervescing agents which provide a buoyancy for the mucoadhesive polymeric matrix. The buoyancy in vitro was expressed as both floating time$(T_{fl})$ and surfing time$(T_{sf})$, which are the time required for floating from the bottom to the surface of the medium and the time to keep the floated state at the surface of medium during release studies, respectively. A close relationship was observed between the buoyancy and the amount of effervescing agent added. $T_{fl}$ of the buoyant hydrogel matrices were decreased to about 10 seconds linearly with increasing the amount of effervescing agent in the range of 5 to 15%. $T_{sf}$ of the buoyant hydrogel matrices were varied from 1 to 3 hr depending on the amount of effervescing agent. The swelling was observed by changes in diameter of the buoyant hydrogel matrices in distilled water or acidic buffer solution, resulted in dependences on pH and the amount of effervescing agents. The release of hydrochlorothiazide from the buoyant hydrogel matrices were followed by apparent zero-order kinetics, while the buoyant hydrogel matrices were floated at the surface and maintaining their swollen shapes.

  • PDF

Interfacial Evaluation and Damage Sensing of Carbon Fiber/Epoxy-AT-PEI Composite using Electro-Micromechanical Techniques (Electro-micromechanical 시험법을 이용한 탄소섬유 강화 Epoxy-AT PEI 복합재료의 손상 감지능 및 계면물성 평가)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Ahn, Byung-Hyun;Park, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.212-215
    • /
    • 2002
  • Interfacial evaluation and damage sensing of the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composites were performed using micromechanical test and electrical resistance measurement. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and thus their interfacial shear strength (IFSS) was improved due to the improved toughness. After curing process, the changes in electrical resistance (ΔR) with increasing AT-PEI contents increased gradually because of the changes in thermal expansion coefficient (TEC) and thermal shrinkage of matrix. Matrix fracture toughness was correlated to the IFSS, residual stress and electrical resistance. The results obtained from the electrical resistance measurement during curing process, reversible stress/strain, and durability test were consistent with modified matrix toughness properties.

  • PDF