• 제목/요약/키워드: Evaluation design

Search Result 12,405, Processing Time 0.045 seconds

Mechanical Properties Evaluation of 3D Printing Recycled Concrete utilizing Wasted Shell Aggregate (패각 잔골재를 활용한 3D 프린팅 자원순환 콘크리트의 역학적 성능 평가)

  • Jeewoo Suh;Ju-Hyeon Park;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The volume of shells, a prominent form of marine waste, is steadily increasing each year. However, a significant portion of these shells is either discarded or left near coastlines, posing environmental and social concerns. Utilizing shells as a substitute for traditional aggregates presents a potential solution, especially considering the diminishing availability of natural aggregates. This approach could effectively reduce transportation logistics costs, thereby promoting resource recycling. In this study, we explore the feasibility of employing wasted shell aggregates in 3D concrete printing technology for marine structures. Despite the advantages, it is observed that 3D printing concrete with wasted shells as aggregates results in lower strength compared to ordinary concrete, attributed to pores at the interface of shells and cement paste. Microstructure characterization becomes essential for evaluating mechanical properties. We conduct an analysis of the mechanical properties and microstructure of 3D printing concrete specimens incorporating wasted shells. Additionally, a mix design is proposed, taking into account flowability, extrudability, and buildability. To assess mechanical properties, compression and bonding strength specimens are fabricated using a 3D printer, and subsequent strength tests are conducted. Microstructure characteristics are analyzed through scanning electron microscope tests, providing high-resolution images. A histogram-based segmentation method is applied to segment pores, and porosity is compared based on the type of wasted shell. Pore characteristics are quantified using a probability function, establishing a correlation between the mechanical properties and microstructure characteristics of the specimens according to the type of wasted shell.

Development and Assessment of an ICT-Based Non-Face-to-Face Lifestyle Program to Improve the Mental Health of Older Adults: A Pilot Study (고령자의 정신건강을 위한 ICT 기반 비대면 라이프스타일 프로그램: 파일럿 연구)

  • Lee, Hey Sig;Park, Hae Yean;Jung, Min-Ye;Park, Ji-Hyuk;Hong, Ickpyo;Kim, Jung-Ran
    • Therapeutic Science for Rehabilitation
    • /
    • v.13 no.1
    • /
    • pp.99-114
    • /
    • 2024
  • Objective : This study aimed to develop an information and communication technology (ICT)-based, non-face-to-face lifestyle program for older adults and assess its applicability. Methods : The program was developed on the basis of the ADDIE model which comprises 5 stages: analysis, design, development, implementation, and evaluation. In this study, a step-by-step identification was performed in 8 stages. Results : The results of the program analysis showed a significant decrease in depressive symptoms and loneliness scores, and an increased quality of life scores. Conclusion : The findings suggest that the ICT-based non-face-to-face lifestyle program developed in this study can motivate older adults to better understand their lifestyles for successful aging, while helping senior citizen centers resume stagnant projects.

Selection of Scale Model Materials for Acoustical Evaluation of 1:50 Multipurpose Halls (1:50 다목적홀의 음향평가를 위한 축소모형재료의 선정)

  • Jeon, Jin-Yong;Kim, Jeong-Jun;Kim, Yong-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.781-789
    • /
    • 2009
  • The absorption coefficients of the materials used in a 1:50 scale model multipurpose hall were measured based on ISO 354 and related laws. The shape and materials for the scale model were evaluated based on reflective surfaces, variable acoustic elements and sound-absorbing quality (125Hz-1kHz average) of seats. The measured average absorption coefficients of audience seats, audience and orchestra were 0.64, 0.74 and 0,45, respectively, which were simulated with the combination of wood, absorption materials and foam board. Various mounting methods for absorption curtain and banner were considered according to the installation methods. The average absorption coefficient was measured as 0.42, 0.47 and 0.45 in the conditions of Type A mounting, E mounting with 0.9 m backing air cavity, and Type G mounting which is suspended at the ceiling, respectively. It was confirmed that the absorption coefficient was increased at low frequency by backing air gap. The finishing material of stage house was an absorption material covered with thin fabric, which aimed average absorption coefficient of 0.68 by using fiber glass board. Each part of the real materials was compared with those of 1:50 scale model and it was found that the absorption characteristics of both cases were similar.

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

MRI Evaluation of Suspected Pathologic Fracture at the Extremities from Metastasis: Diagnostic Value of Added Diffusion-Weighted Imaging

  • Sun-Young Park;Min Hee Lee;Ji Young Jeon;Hye Won Chung;Sang Hoon Lee;Myung Jin Shin
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.812-822
    • /
    • 2019
  • Objective: To assess the diagnostic value of combining diffusion-weighted imaging (DWI) with conventional magnetic resonance imaging (MRI) for differentiating between pathologic and traumatic fractures at extremities from metastasis. Materials and Methods: Institutional Review Board approved this retrospective study and informed consent was waived. This study included 49 patients each with pathologic and traumatic fractures at extremities. The patients underwent conventional MRI combined with DWI. For qualitative analysis, two radiologists (R1 and R2) independently reviewed three imaging sets with a crossover design using a 5-point scale and a 3-scale confidence level: DWI plus non-enhanced MRI (NEMR; DW set), NEMR plus contrast-enhanced fat-saturated T1-weighted imaging (CEFST1; CE set), and DWI plus NEMR plus CEFST1 (combined set). McNemar's test was used to compare the diagnostic performances among three sets and perform subgroup analyses (single vs. multiple bone abnormality, absence/presence of extra-osseous mass, and bone enhancement at fracture margin). Results: Compared to the CE set, the combined set showed improved diagnostic accuracy (R1, 84.7 vs. 95.9%; R2, 91.8 vs. 95.9%, p < 0.05) and specificity (R1, 71.4% vs. 93.9%, p < 0.005; R2, 85.7% vs. 98%, p = 0.07), with no difference in sensitivities (p > 0.05). In cases of absent extra-osseous soft tissue mass and present fracture site enhancement, the combined set showed improved accuracy (R1, 82.9-84.4% vs. 95.6-96.3%, p < 0.05; R2, 90.2-91.1% vs. 95.1-95.6%, p < 0.05) and specificity (R1, 68.3-72.9% vs. 92.7-95.8%, p < 0.005; R2, 83.0-85.4% vs. 97.6-98.0%, p = 0.07). Conclusion: Combining DWI with conventional MRI improved the diagnostic accuracy and specificity while retaining sensitivity for differentiating between pathologic and traumatic fractures from metastasis at extremities.

Analysis of RSET According to Exit Installation Standards for the Exterior of a Food Manufacturing Plant Building (식품공장 건축물 바깥쪽으로의 출구 설치기준에 따른 RSET 분석)

  • Park, Ha-Soung;Lee, Jae-Wook;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.201-208
    • /
    • 2024
  • In this study, we investigated whether the evacuation time according to the exit installation standards specified in the building code during a food factory fire is compatible with the evacuation time based on the performance-based design specified by the fire department, in order to determine if evacuation safety is ensured. We used the Pathfinder program to confirm the evacuation time, and experimented with three scenarios for exit installation standards towards the outside of the building: 60m, 80m, and 100m. The target building in the experiment corresponded to the building code's exit installation standard of 100m from each dwelling. The experimental results showed tt in the cases of 80m and 100m, ASET exceeded RSET, indicating tt evacuation safety was not ensured, while in the case of 60m, evacuation safety was maintained. Through this study, it was confirmed tt even when the exit installation standards towards the outside of the building are met, evacuation safety may not be guaranteed.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

Evaluation of hydrologic risk of drought in Boryeong according to climate change scenarios using scenario-neutral approach (시나리오 중립 접근법을 활용한 기후변화 시나리오에 따른 보령시 가뭄의 수문학적 위험도 평가)

  • Kim, Jiyoung;Han, Young Man;Seo, Seung Beom;Kim, Daeha;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.225-236
    • /
    • 2024
  • To prepare for the impending climate crisis, it is necessary to establish policies and strategies based on scientific predictions and analyses of climate change impacts. For this, climate change should be considered, however, in conventional scenario-led approach, researchers select and utilize representative climate change scenarios. Using the representative climate change scenarios makes prediction results high uncertain and low reliable, which leads to have limitations in applying them to relevant policies and design standards. Therefore, it is necessary to utilize scenario-neutral approach considering possible change ranges due to climate change. In this study, hydrologic risk was estimated for Boryeong after generating 343 time series of climate stress and calculating drought return period from bivariate drought frequency analysis. Considering 18 scenarios of SSP1-2.6 and 18 scenarios of SSP5-8.5, the results indicated that the hydrologic risks of drought occurrence with maximum return period ranged 0.15±0.025 within 20 years and 0.3125±0.0625 within 50 years, respectively. Therefore, it is necessary to establish drought policies and countermeasures in consideration of the corresponding hydrologic risks in Boryeong.

Evaluation of the CNESTEN's TRIGA Mark II research reactor physical parameters with TRIPOLI-4® and MCNP

  • H. Ghninou;A. Gruel;A. Lyoussi;C. Reynard-Carette;C. El Younoussi;B. El Bakkari;Y. Boulaich
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4447-4464
    • /
    • 2023
  • This paper focuses on the development of a new computational model of the CNESTEN's TRIGA Mark II research reactor using the 3D continuous energy Monte-Carlo code TRIPOLI-4 (T4). This new model was developed to assess neutronic simulations and determine quantities of interest such as kinetic parameters of the reactor, control rods worth, power peaking factors and neutron flux distributions. This model is also a key tool used to accurately design new experiments in the TRIGA reactor, to analyze these experiments and to carry out sensitivity and uncertainty studies. The geometry and materials data, as part of the MCNP reference model, were used to build the T4 model. In this regard, the differences between the two models are mainly due to mathematical approaches of both codes. Indeed, the study presented in this article is divided into two parts: the first part deals with the development and the validation of the T4 model. The results obtained with the T4 model were compared to the existing MCNP reference model and to the experimental results from the Final Safety Analysis Report (FSAR). Different core configurations were investigated via simulations to test the computational model reliability in predicting the physical parameters of the reactor. As a fairly good agreement among the results was deduced, it seems reasonable to assume that the T4 model can accurately reproduce the MCNP calculated values. The second part of this study is devoted to the sensitivity and uncertainty (S/U) studies that were carried out to quantify the nuclear data uncertainty in the multiplication factor keff. For that purpose, the T4 model was used to calculate the sensitivity profiles of the keff to the nuclear data. The integrated-sensitivities were compared to the results obtained from the previous works that were carried out with MCNP and SCALE-6.2 simulation tools and differences of less than 5% were obtained for most of these quantities except for the C-graphite sensitivities. Moreover, the nuclear data uncertainties in the keff were derived using the COMAC-V2.1 covariance matrices library and the calculated sensitivities. The results have shown that the total nuclear data uncertainty in the keff is around 585 pcm using the COMAC-V2.1. This study also demonstrates that the contribution of zirconium isotopes to the nuclear data uncertainty in the keff is not negligible and should be taken into account when performing S/U analysis.

Impact of an Instrumental Daily Living Activities Occupational Therapy Program for Adults With Developmental Disabilities on Their Daily Living Activities and Quality of Life (성인 발달장애인 대상 수단적 일상생활활동 작업치료 프로그램이 일상생활활동 및 삶의 질에 미치는 영향)

  • Jeong, Eun-Hwa
    • Therapeutic Science for Rehabilitation
    • /
    • v.13 no.2
    • /
    • pp.85-94
    • /
    • 2024
  • Objective : This study aimed to determine the impact of an instrumental daily living activity program for adults with developmental disabilities on their daily living activities and quality of life (QOL). Methods : This study used a single-group pre-test-post-test experimental design. Participants comprised 17 adults with developmental disabilities from the Welfare Center for the Disabled. This program consisted of 10 sessions, including pre- and post-assessments, pertaining to training and education on grocery shopping, meal preparation and cleaning, home management, safety, and emergency management. The evaluation tools used in this study were the Quality of Life Questionnaire, Korean version of the Life Space Assessment (K-LSA), and Korean version of the Instrumental Activities of Daily Living (K-IADL). Results : There was a statistically significant difference in the QOL and K-IADL scores before and after the instrumental activities of daily living occupational therapy program, and there was no statistically significant difference in the K-LSA scores. Conclusion : This study confirmed that implementing an IADL program for adults with developmental disabilities had a positive impact on performance and QOL. For adults with developmental disabilities to participate in daily life and society, interventions for work participation, including training in activities of daily living, must be expanded.