• Title/Summary/Keyword: Evacuation Speed

Search Result 88, Processing Time 0.023 seconds

A study on quantitative risk assessment for railway Tunnel fire (철도터널에서 차량화재시 정량적 위험도 평가에 관한 연구)

  • Yoo, Ji-Oh;Nam, Chang-Ho;Jo, Hyeong-Je;Kim, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2010
  • As we learned in Daegu subway fire accident, fire in the railway tunnel is prone to develop to large disaster due to the limitation of smoke control and smoke exhaust. In railway tunnel, in order to ensure fire safety, fire prevention and fighting systems are installed by quantitative risk assessment results. Therefore, in this research, developed the program to establish quantitative risk assessment and suggested quantitative safety assessment method including fire scenarios in railway tunnel, fire and evacuation analysis model, fatality estimate model and societal risk criteria. Moreover, this method applys to plan preventing disaster for Honam high speed railway tunnel. As results, we presented the proper distance of escape route and societal risk criteria.

The study on the operation of fire fighting vehicle for a long railway tunnel (장대터널용 소방차량의 운용에 관한 연구)

  • Kwon, Tae-Soon;Park, Won-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.516-521
    • /
    • 2016
  • In this study, we investigated the operation of railroad fire fighting vehicles against fires on trains in a long railway tunnel. In recent years, long railway tunnels (more than 10 km in length) have been built and the number of such tunnels, such as the Geumjeong tunnel (20.3 km in length) on the Gyeongbu high speed line, Solan tunnel (16.7 km in length) on the Yeongdong line and Yulhyeon tunnel (50.3 km in length) on the Suseo high speed line which is scheduled to be opened in the second half of 2016, is increasing. Significant damage is to be expected, due to the increased evacuation time and limited accessibility of fire services when the train is stopped by an urgent fire in the tunnel. Special fire fighting vehicles capable of running on rails have been developed and operated in overseas advanced countries. Therefore, a fire-response system using Unimog vehicles, which can run on road and rail, instead of road vehicles, is necessary. The characteristics of the railway tunnel and thermal environmental change caused by a train fire in a tunnel were analyzed in this study. Also, the operational requirements of the railroad fire fighting vehicles were evaluated by taking into account the specifications of the railroad fire fighting vehicles under development.

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

Selecting a Landmark for Repositioning Automated Driving Vehicles in a Tunnel (자율주행 차량의 터널내 측위오차 보정 지원시설 선정)

  • Kim, Hyoungsoo;Kim, Youngmin;Park, Bumjin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.200-209
    • /
    • 2018
  • This study proposed a method to select existing facilities as a landmark in order to reset accumulated errors of dead reckoning in a tunnel difficult to receive GNSS signals in automated driving. First, related standards and regulations were reviewed in order to survey 'variety' on shapes and installation locations as a feature of facilities. Second, 'recognition' on facilities was examined using image and Lidar sensors. Last, 'regularity' in terms of installation locations and intervals was surveyed through related references. The results of this study selected a fire fighting box / lamp (50m), an evacuation corridor lamp (300m), a lane control system (500m), a maximum / minimum speed limit sign and a jet fan as a candidate landmark to reset positioning errors. Based on those facilities, it was determined that error correction was possible. The results of this study are expected to be used in repositioning of automated driving vehicles in a tunnel.

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screens Doors are Installed - Analysis on Smoke Control Performance by Fans equipped in Tunnel (스크린도어가 설치된 대심도 지하역사의 제연 실험 - 터널 송풍기에 의한 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.721-736
    • /
    • 2019
  • In this paper, the behavior of the fire smoke due to the operation of the ventilation systems when the fire occurred in the underground station (6 basement floors) and the tunnel at the great depth was measured. Fire smoke was generated by using a smoke generator which realized heat buoyancy effect by using hot air blower. The two locations of the fire were selected on the platform and on the platform of the tunnel located outside the screen door. A ventilation mode is generally used in which smoke is exhausted through a vent hole provided in a platform when a platform fire occurs. The tests were performed by operating the exhaust through the ventilation holes of the tunnel part located at both ends of the platform. The smoke density and the wind speed/velocity were measured at various positions, and the videos were taken to analyze the movement and smoke of the smoke. In both cases for fire inside the platform and in the railway tunnel, due to the ventilation mode operation of the fan for the platform and the exhaust of the fans in the tunnel smoke were well exhausted and the smoke propagation to the area near the smoke zone was suppressed. The smoke-control mode, which is applied to both fans for the platform and fans for in the tunnel at both ends of the platform, can provide a safer evacuation environment to the passengers from the fire smoke when the platform fire or fire train stops.

Fundamental Study on Algorithm Development for Prediction of Smoke Spread Distance Based on Deep Learning (딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • This is a basic study on the development of deep learning-based algorithms to detect smoke before the smoke detector operates in the event of a ship fire, analyze and utilize the detected data, and support fire suppression and evacuation activities by predicting the spread of smoke before it spreads to remote areas. Proposed algorithms were reviewed in accordance with the following procedures. As a first step, smoke images obtained through fire simulation were applied to the YOLO (You Only Look Once) model, which is a deep learning-based object detection algorithm. The mean average precision (mAP) of the trained YOLO model was measured to be 98.71%, and smoke was detected at a processing speed of 9 frames per second (FPS). The second step was to estimate the spread of smoke using the coordinates of the boundary box, from which was utilized to extract the smoke geometry from YOLO. This smoke geometry was then applied to the time series prediction algorithm, long short-term memory (LSTM). As a result, smoke spread data obtained from the coordinates of the boundary box between the estimated fire occurrence and 30 s were entered into the LSTM learning model to predict smoke spread data from 31 s to 90 s in the smoke image of a fast fire obtained from fire simulation. The average square root error between the estimated spread of smoke and its predicted value was 2.74.

Prediction of Damages and Evacuation Strategies for Gas Leaks from Chlorine Transport Vehicles (염소 운송차량 가스누출시 피해예측 및 대피방안)

  • Yang, Yong-Ho;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.407-417
    • /
    • 2024
  • The objective of this study is to predict and reduce potential damage caused by chlorine gas leaks, a hazardous material, when vehicles transporting it overturn due to accidents or other incidents. The goal is to forecast the anticipated damages caused by chlorine toxicity levels (ppm) and to design effective response strategies for mitigating them. To predict potential damages, we conducted quantitative assessments using the ALOHA program to calculate the toxic effects (ppm) and damage distances resulting from chlorine leaks, taking into account potential negligence of drivers during transportation. The extent of damage from toxic gas leaks is influenced by various factors, including the amount of the leaked hazardous material and the meteorological conditions at the time of the leak. Therefore, a comprehensive analysis of damage distances was conducted by examining various scenarios that involved variations in the amount of leakage and weather conditions. Under intermediate conditions (leakage quantity: 5 tons, wind speed: 3 m/s, atmospheric stability: D), the estimated distance for exceeding the AEGL-2 level of 2 ppm was calculated to be 9 km. This concentration poses a high risk of respiratory disturbance and potential human casualties, comparable to the toxicity of hydrogen chloride. In particular, leaks in urban areas can lead to significant loss of life. In the event of a leakage incident, we proposed a plan to minimize damage by implementing appropriate response strategies based on the location and amount of the leak when an accident occurs.

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.