• Title/Summary/Keyword: Eutetic colony size

Search Result 1, Processing Time 0.013 seconds

Effects of Carbide Morphology and Heat Treatment on Abrasion Wear Resistance of Chromium White Cast Irons (합금크롬주철의 탄화물형상 및 열처리가 내마모성에 미치는 영향)

  • Yu, Sung-Kon;Matsubara, Yasuhiro
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.407-413
    • /
    • 2002
  • Eutectic high chromium cast irons containing 17%Cr and 26%Cr were produced for this research by making each of them solidify unidirectionally. Abrasion wear test against SiC or $Al_2$O$_3$bonded paper was carried out using test pieces cut cross-sectionally at several distances from the chill face of castings. The wear resistance was evaluated in connection with the parameters such as eutectic colony size($E_w$), area fraction of boundary region of the colony($S_B$) where comparatively large massive chromium carbides are crystallized and, average diameter of chromium carbides in the boundary region($D_c$). The wear rate($R_w$), which is a gradient of straight line of wear loss versus testing time, was influenced by the type and the particle size of the abrasives. The $R_w$ value against SiC was found to be larger than that against A1$_2$O$_3$under the similar abrasive particle size. In the case of SiC, the $R_w$ value increased with an increase in the particle size. The $R_w$ value also increased as the eutectic colony size decreased, and that of the 17%Cr iron was larger than that of the 26%Cr iron at the same $E_w$ value. Both of the $S_B$ and $D_c$ values were closely related to the $R_w$ value regardless of chromium content of the specimens. The $R_w$ values of the annealed specimens were greater than those of the as-cast specimens because of softened matrix structures. As for the relationship between wear rate and macro-hardness of the specimens, the hardness resulting in the minimum wear rate was found to be at 550 HV30.