• 제목/요약/키워드: Eutectic temperature

검색결과 295건 처리시간 0.022초

Electrorefining of CuZr Alloy Using Ba2ZrF8-LiF Electrolyte

  • Lee, Seong Hun;Choi, Jeong Hun;Yoo, Bung Uk;Lee, Jong Hyeon
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.672-678
    • /
    • 2017
  • In the production of zirconium cladding tube, a pickling acid solution is used to remove surface contaminants, which generates tons of pickling acid waste. The waste pickling solution is a valuable resource of Hf-free Zr. Many studies have investigated separating the Hf-free Zr source from the waste pickling acid. The results showed that $Ba_2ZrF_8$ precipitates prepared from the waste pickling acid were useful as an electrolyte for the electrorefining of Zr in molten salt. In the present work, electrorefining was performed in a $Ba_2ZrF_8-LiF$ binary electrolyte to recover Zr from a Hf-free CuZr ingot anode prepared by electroreduction. Before electrorefining, two pretreatments are performed. First, electrolyte melting was carried out to determine the eutectic temperature, and second, the electrolyte was treated to eliminate impurities, mainly hydride. After electrorefining, the cathode deposits were analyzed by $O_2$ gas analyzer and SEM-EDX to explore the possibility of recovering nuclear-grade Zr metal. Moreover, the anode was analyzed by SEM-EDX to determine the Zr dissolution depth.

Correlation between rare earth elements in the chemical interactions of HT9 cladding

  • Lee, Eun Byul;Lee, Byoung Oon;Shim, Woo-Yong;Kim, Jun Hwan
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.915-922
    • /
    • 2018
  • Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.

AZ91 마그네슘 합금에서 노냉으로 생성된 불연속 석출물의 미세조직 특징 (Microstructural Feature of Discontinuous Precipitates Formed by Furnace Cooling in AZ91 Magnesium Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제31권5호
    • /
    • pp.231-236
    • /
    • 2018
  • The purpose of this study was to investigate the microstructural characteristics and hardness distribution of AZ91 magnesium alloy furnace-cooled to room temperature after solution treatment, and to compare the results with those of as-cast condition. The as-cast alloy showed a partially divorced eutectic ${\beta}(Mg_{17}Al_{12})$ phase and discontinuous precipitates (DPs) with a lamellar morphology, while only DPs were observed in the furnace-cooled alloy. The DPs in the furnace-cooled AZ91 alloy had various apparent interlamellar spacings, which would be ascribed to the different transformation temperatures during the furnace cooling. The average hardness for the furnace-cooled alloy is similar to that for the as-cast alloy. It is interesting to note that the hardness values of the furnace-cooled alloy were distributed over a narrower range than those of the as-cast alloy. This is likely to be caused by the relatively more homogeneous microstructure of the furnace-cooled alloy in comparison with the ascast one.

Preliminary conceptual design of a small high-flux multi-purpose LBE cooled fast reactor

  • Xiong, Yangbin;Duan, Chengjie;Zeng, Qin;Ding, Peng;Song, Juqing;Zhou, Junjie;Xu, Jinggang;Yang, Jingchen;Li, Zhifeng
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3085-3094
    • /
    • 2022
  • The design concept of a Small High-flux Multipurpose LBE(Lead Bismuth Eutectic) cooled Fast Reactor (SHMLFR) was proposed in the paper. The primary cooling system of the reactor is forced circulation, and the fuel element form is arc-plate loaded high enrichment MOX fuel. The core is cylindrical with a flux trap set in the center of the core, which can be used as an irradiation channel. According to the requirements of the core physical design, a series of physical design criteria and constraints were given, and the steady and transient parameters of the reactor were calculated and analyzed. Regarding the thermal and hydraulic phenomena of the reactor, a simplified model was used to conduct a preliminary analysis of the fuel plates at special positions, and the temperature field distribution of the fuel plate with the highest power density under different coolant flow rates was simulated. The results show that the various parameters of SHMLFR meet the requirements and design criteria of the physical design of the core and the thermal design of the reactor. This implies that the conceptual design of SHMLFR is feasible.

경막형 용융결정화에 의한 파라디옥사논과 디에틸렌글리콜 혼합물로부터 파라디옥사논의 정제 (Purification of p-Dioxanone from p-Dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization)

  • 김성일;김철웅;박소진
    • Korean Chemical Engineering Research
    • /
    • 제43권5호
    • /
    • pp.595-602
    • /
    • 2005
  • 파라디옥사논에 포함된 주요한 불순물인 디에틸렌글리콜을 제거하기 위해, 파라디옥사논과 디에틸렌글리콜과의 이성분계 고액 상평형 및 혼합물의 밀도를 측정하였으며, 종(seed)을 이용한 경막 용융결정화 실험을 하였다. 얻어진 2성분계 고액 상평형 결과는 단순 공융계를 형성하였는데, 공용점은 파라디옥사논의 0.08 몰농도에서 246 K였다. 또한, 혼합물의 밀도 데이터는 ${\rho}_l=k_1+k_2x+k_3T+k_4xT$ 식과 잘 연관되었으며, 각 파라메타인 $k_1$, $k_2$, $k_3$$k_4$의 값은 0.405, 1.361, 0.002, -0.004이었다. 용융결정화 실험에서 결정 성장속도(G)는 냉각속도가 감소하거나 파라디옥사논의 초기농도가 증가할수록 감소하는 경향을 나타내었으며, 결정 성장속도식은 과냉각 온도의 1.5승에 비례하였다. 또한, 불순물의 제거 정도를 나타내는 유효 분배계수($K_{eff}$)는 냉각속도 및 PDX 초기농도가 증가할수록 증가하는 경향을 나타내었으며, 유효분배계수는 Wintermantel 모델에 의해 $K_{eef}=-0.0604+6.392{\times}Z$ 관계로 표현되었다. 최종적으로 얻어진 PDX 순도는 결정화 조작변수를 최적화하여 99% 이상으로 조절할 수 있음을 알 수 있었다.

PCB에서의 ECM 특성에 미치는 SnPb 솔더 합금의 분극거동의 영향 (Influence of Polarization Behaviors on the ECM Characteristics of SnPb Solder Alloys in PCB)

  • 이신복;유영란;정자영;박영배;김영식;주영창
    • 마이크로전자및패키징학회지
    • /
    • 제12권2호
    • /
    • pp.167-174
    • /
    • 2005
  • 전자 부품의 크기가 점점 줄어들고 고집적화됨에 따라 전자 패키지 내부에 사용되는 금속간 간격이 줄어들고 있다. 이에 더하여 고온 고습한 환경에서 금속간에 전압이 인가되면 금속의 이온화가 촉진, 금속으로 이루어진 필라멘트가 형성되어 결국 절연파괴에 이르게 된다. 이러한 현상이 electrochemical migration(ECM)이다. 이에 인쇄회로기판을 사용하여 ECM 특성 평가를 수행하였다. 항온/항습조건($85^{\circ}C,\;85{\%}RH$)에서 PCB의 $300 {\mu}m$의 단자간격을 가진 through-hole via 표면에서 발생하는 ECM 현상은 CAF가 절연파괴의 주된 메커니즘이었다. solder를 구성하는 Sn과 Pb 조성 분석을 통해 Pb 의 이온 이동도가 Sn의 이온 이동도보다 큰 것을 알 수 있었으며 이는 급격한 양극용해 거동을 보이는 pure Pb의 분극거동과 상관관계가 있는 것으로 사료된다. 또한 시간에 따른 절연파괴시간 시험을 통하여 ECM에 의한 절연파괴시간이 인가전압에 의존하며 인가전압 의존성 지수값(n)은 2로 나타났다.

  • PDF

N-vinyl-2-pyrrolidone과 2-pyrrolidone 혼합물의 고-액 상평형 및 용융결정화를 이용한 N-vinyl-2-pyrrolidone의 결정성장속도 연구 (Studies of Solid-Liquid Phase Equilibria for Mixtures of N-vinyl-2-pyrrolidone+2-pyrrolidone and Growth Rate of N-vinyl-2-pyrrolidone Crystal Using Melt Crystallization)

  • 김선형;서명도;탁문선;김우식;양대륙;강정원
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.587-590
    • /
    • 2013
  • N-vinyl-2-pyrrolidone (NVP)에 포함된 불순물인 2-pyrrolidone을 제거하기 위해 용융결정화가 이용될 수 있으며, 그 기본 연구로써 두 물질의 고-액 상평형을 측정하였다. 시차주사 열량계(DSC)와 결정화기를 이용하여 얻어진 두 실험결과는 비슷한 경향을 보였으며, NVP와 2-pyrrolidone으로 구성된 2성분계 혼합물이 공융계를 형성함을 보였다. 간단한 열역학 식을 이용하여 혼합물의 상평형과 공융점(eutectic point)을 계산하였으며 실험결과와 비교적 잘 일치하였다. 결정화 공정의 설계에 중요한 요소인 결정성장속도를 알기 위해 판형 결정화기를 이용하여 시간에 따른 NVP 결정의 두께를 측정하였다. 냉각온도가 낮을수록 NVP의 결정성장속도가 증가하였다. 실험데이터로부터 상관된 열전달계수는 결정의 성장 거동을 잘 설명하였다.

인공타액에서 수종 아말감의 부식시 용해성분 및 표면 부식 생성물에 관한 실험적 연구 (EXPERIMENTAL STUDY ON THE DISSOLUTION COMPONENTS AND CORROSION PRODUCTS OF SEVERAL AMALGAMS IN ARTIFICIAL SALIVA)

  • 조승주;이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.1-26
    • /
    • 1994
  • The purpose of this study was to investigate the dissolution components during corrosion of amalgams and to identify surface corrosion products in the modified Fusayama artificial saliva. Four type of amalgam alloys were used: low copper lathe cut amalgam alloy (Cavex 68), low copper spherical amalgam alloy (Caulk Spherical Alloy), high copper admixed amalgam alloy (Dispersalloy) and high copper single composition amalgam alloy (Tytin). Each amalgam alloy and Hg were triturated according to the manufacturer's direction by means of mechanical amalgamator (Capmaster, S.S.White), and then the triturated mass was inserted into the cylindrical metal mold which was 10mm in diameter and 2.0mm in height and condensed with compression of 150kg/$cm^2$ using oil pressor. The specimens were removed from the mold and stored at room temperature for 7 days and cleansed with distiled water for 30 minutes in an ultrasonic cleaner. The specimens were immersed in the modified Fusayama artificial saliva for the periods of 1 month, 3 months and 6 months. The amounts of Hg, Cu, Sn and Zn dissolved from each amalgam specimen immersed in the artificial saliva for the periods of 1 month, 3 months and 6 months were measured using Inductivity Coupled Plasma Atomic Emission Spectrometry (ICPQ-1000, Shimadzu, Japan) and amount of Ag dissolved from amalgam specimen was measured using Atomic Absorption Spectrophotometry (Atomic Absorption/Flame emission spectrophotometer M-670, Shimadzu, Japan). A surface corrosion products of specimens were analysed using Electron Spectroscopy Chemical Analyser (ESCA PHI-558, PERKIN ELMER, U.S.A.). The secondary image and back scattered image of corroded surface of specimens was observed under the SEM, and the corroded surface of specimens was analysed with the EDX. The following results were obtained. 1. The dissolution amount of Cu was the most in high copper admixed amalgam(Dispersalloy) and the least in high copper single composition amalgam(Tytin). 2. Sn and Zn were dissolved during all the experiment periods, and dissolution amounts were decreased as the time elapsed. 3. Initial surface corrosion products were ZnO and SnO. 4. Corrosion of ${\gamma}$ and ${\gamma}_2$ phase in low copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in low copper spherical amalgam(Caulk Sperical Alloy). 5. Corrosion of ${\gamma}$ and $\eta$' phase in high copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in high copper admixed amalgam(Dispersalloy). 6. Sn-Cl was produced in the subsurface of low copper amalgams and high copper admixed amalgam.

  • PDF

Flow blockage analysis for fuel assembly in a lead-based fast reactor

  • Wang, Chenglong;Wu, Di;Gui, Minyang;Cai, Rong;Zhu, Dahuan;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3217-3228
    • /
    • 2021
  • Flow blockage of the fuel assembly in the lead-based fast reactor (LFR) may produce critical local spots, which will result in cladding failure and threaten reactor safety. In this study, the flow blockage characteristics were analyzed with the sub-channel analysis method, and the circumferentially-varied method was employed for considering the non-uniform distribution of circumferential temperature. The developed sub-channel analysis code SACOS-PB was validated by a heat transfer experiment in a blocked 19-rod bundle cooled by lead-bismuth eutectic. The deviations between the predicted coolant temperature and experimental values are within ±5%, including small and large flow blockage scenarios. And the temperature distributions of the fuel rod could be better simulated by the circumferentially-varied method for the small blockage scenario. Based on the validated code, the analysis of blockage characteristics was conducted. It could be seen from the temperature and flow distributions that a large blockage accident is more destructive compared with a small one. The sensitivity analysis shows that the closer the blockage location is to the exit, the more dangerous the accident is. Similarly, a larger blockage length will lead to a more serious case. And a higher exit temperature will be generated resulting from a higher peak coolant temperature of the blocked region. This work could provide a reference for the future design and development of the LFR.

일방향 응고 니켈기 초내열 합금 CM247LC의 온도에 따른 크리프 특성 (Temperature Dependent Creep Properties of Directionally Solidified Ni-based Superlloy CM247LC)

  • 최백규;도정현;정중은;석우영;이유화;김인수
    • 한국주조공학회지
    • /
    • 제41권6호
    • /
    • pp.505-515
    • /
    • 2021
  • 일방향응고로 제조된 니켈기 초내열합금 CM247LC의 다양한 온도 및 응력조건에서 크리프 특성에 대해 고찰하였다. 열처리 후 일부 공정조직이 남아 있었으며 비교적 균일한 육면체의 γ'이 수지상 내부와 수지상간 영역에서 관찰되었다. 상대적 저온인 750℃의 고응력 크리프 영역에서는 1차 크리프 동안 많은 변형이 발생하였으나 고온으로 갈수록 3차 크리프 구간이 크리프 변형시간의 대부분을 차지함을 알 수 있었다. 저온 고응력에서는 부분 전위가 γ'으로 진입하며 적층결함을 γ'내에 생성시켰으며 초기 크리프 변형속도가 증가하는 부분이 있었으나 850℃ 이상의 온도에서는 γ' 내부에서 적층결함이 관찰되지 않았으며 이는 적층결함에너지의 온도의존성 때문인 것으로 판단된다. 고온이어서 확산속도가 빠른 950℃와 1000℃에서는 γ'의 래프팅이 관찰되었다. 온도가 좀 더 낮은 850℃에서는 변형기구가 응력에 따라 다르게 나타나서 상대적으로 크리프 시간이 긴 저응력에서만 래프팅이 관찰되었다.