• 제목/요약/키워드: Eutectic modification

검색결과 31건 처리시간 0.02초

주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 공정 Mg2Si 개량과 주조특성에 미치는 Sc, Sr 첨가원소의 영향 (Effect of Sc, Sr Elements on Eutectic Mg2Si Modification and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제35권6호
    • /
    • pp.147-154
    • /
    • 2015
  • The effects of Sc and Sr elements on the modification of the eutectic $Mg_2Si$ phase and the castability were investigated in the Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurements of the cooling curve and microstructure observations were performed to analyze the additional effects of Sc and Sr minor elements during the solidification process. A prominent effect found on the modification of the eutectic $Mg_2Si$ phase with additions of the Sr and Sc elements. Here, a fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident with an addition of Sc element up to 0.2 wt%. The growth temperature of the eutectic $Mg_2Si$ phase decreased and the effect on the modification of the eutectic $Mg_2Si$ phase increased with the addition of Sr element up to 0.02 wt%. The addition of 0.02wt%Sr had the strongest effect on the modification of the eutectic $Mg_2Si$ phase, and the resulting microstructure of the eutectic $Mg_2Si$ phase was found to have a fibrous morphology with a decreased aspect ratio and an increased modification ratio. Fluidity and shrinkage tests were conducted to evaluate the castability of the alloy. The addition of 0.02wt%Sr effectively increased the fluidity of the alloy, while an addition of Sc did not show any effect compared to when nothing was added. The maximum filling length was recorded for 0.01wt%TiB-0.02wt%Sr owing to the effect of the fine ${\alpha}$-Al grains. The macro-shrinkage ratio decreased, while the micro-shrinkage ratio increased with the addition of various eutectic modifiers. The highest ratio of micro-shrinkage was recorded for the 0.02wt%Sr condition. However, the total shrinkage ratio was nearly identical regardless of the amounts added in this study.

비평형 열처리에 의한 주조용 Al-Si-Cu합금 조직의 개량 효과 (Effects of the Non-equilibrium Heat-treatment on Modification of Microstructures of Al-Si-Cu Cast Alloy)

  • 김헌주
    • 열처리공학회지
    • /
    • 제13권6호
    • /
    • pp.391-397
    • /
    • 2000
  • Addition of Ca element and nonequilibrium heat treatment which promotes shape modification of eutectic Si and ${\beta}$ intermetallic compound were conducted to improve the mechanical properties of Al-Si-Cu alloy. Modification of eutectic Si and dissolution of needle-shape ${\beta}$ intermetallic compounds were possible by nonequilibrium heat treatment in which specimens were held at $505^{\circ}C$ for 2 hours in Al-Si-Cu alloy with Fe. Owing to the decrease in aspect ratio of eutectic Si by the heat treatment of the alloy with 0.33wt.% Fe, the increase in elongation was prominent to be more than double that in the as-cast specimen. Dissolution of needle-shape ${\beta}$ intermetallic compounds in the alloy with 0.85wt.% Fe led to the improvement of tensile strength as the length of ${\beta}$ compounds decreased to 50%.

  • PDF

아공정 Al-Si합금 조직에 미치는 Sc의 효과 (The Effects of Sc on the Microstructure of Hypoeutectic Al-Si Alloys)

  • 김명한;이종태
    • 한국주조공학회지
    • /
    • 제24권3호
    • /
    • pp.145-152
    • /
    • 2004
  • The eutectic Si in Al-8.5wt.%Si alloy was changed from large flake to fine lemellar(or fibrous) shape when the Sc amount in the Al-Si alloy reaches 0.2wt.%. The optimum amount of Sc for the best modification effect was 0.8wt.% and slight decrease of modification effect occurred over this value. The study on the distribution of the modifiers(Sr, Na, and Sc) and the measurement of the surface tension of the Al-8.5wt.%Si alloy melt added with Sr, Na, and Sc modifier, respectively, reveals that Sc modifies the eutectic Si by the decrease of surface tension, while Sr and Na modify the eutectic Si mainly by impurity induced twinning mechanism.

Al-Si-Mg계 주조합금의 미세조직에 미치는 Ti 및 Sr첨가 영향 (Effect of Ti and Sr on the Microstructure of Al-Si-Mg Casting Alloy)

  • 정재영;김경현;김창주
    • 한국기계연구소 소보
    • /
    • 통권20호
    • /
    • pp.71-78
    • /
    • 1990
  • This investigation was undertaken to establish the technologies of grain refinement and modification, and to characterize material properties, essential for high quality aluminum alloy castings. Grain refinement seldom changed DAS and eutectic Si size, but largely decrease grain size. The variations of grain size induced by grain refinement had a great influence on the elongation without changes in the tensile strength or yield strength. The optimum Ti level lies between 0.1% and 0.16% to achieve the best possible mechanical properties. DAS and grain size were little affected, but eutectic Si size was greatly refined by modification. The variation of eutectic Si size had a great effect on the elongation, impact value, fracture toughness and fatigue crack propagation rate without changes in the tensile strength or yield strength. The Sr content of 0.015% is optimum to modification.

  • PDF

Al2Ca를 함유한 A356 합금에서의 다양한 열처리 조건에 따른 공정 Si 개량화 거동 (Modification Behavior of Eutectic Si with Varying Heat Treatment Conditions in A356 Alloy with Al2Ca)

  • 김세준;현승균;김세광;윤영옥
    • 한국주조공학회지
    • /
    • 제34권5호
    • /
    • pp.156-161
    • /
    • 2014
  • This study is focused on the effect of $Al_2Ca$ as a modifier on eutectic Si modification of A356 alloy. Microstructural observation was carried out for as-cast, as-solution treated and as-aged samples. Solution treatment and aging were performed for 2, 4, 6 and 10 hrs at $540^{\circ}C$ and $170^{\circ}C$, respectively. Although A356 alloy, which $Al_2Ca$ was added, has no significant difference in as-cast phases with normal A356 alloys, it shows much more modified eutectic Si, grain refinement and improved tensile property both in as-cast and as-heat treated conditions. TGA result shows that $Al_2Ca$ added A356 alloy has a certain improvement in oxidation resistance.

아공정 Al-Si합금에 있어서 공정 Si크기에 미치는 전자기진동의 영향 (The Effect of Electromagnetic Vibration on Eutectic Si Size in Hypoeutectic Al-Si alloys)

  • 최정평;윤의박;남태운
    • 한국주조공학회지
    • /
    • 제24권2호
    • /
    • pp.79-84
    • /
    • 2004
  • In this study, the electromagnetic vibration is adopted for modifying eutectic Si phase and reducing its size. The higher the current density and frequency of electromagnetic vibration(EMV), the finer the size of eutectic Si phase. The tensile strength and elongation of EMVed alloy were highly improved. Measured twin probability of EMVed alloy at a frequency of 1000 Hz was approximately six times as high as that of the normal alloy. The mechanism for the increase in twin density due to EMV during solidification could be supposed from the fact that the preferential growth along <112> in silicon was suppressed by preventing Si atom from attaching to the growing interface of Si phase and by changing the solid/liquid interfacial energy of silicon. According to the result of UTS test, because of modification of eutectic Si, UTS and elongation are highly increased.

재활용 스크랩 함유 Al-Si-Cu계 합금의 주조특성에 미치는 결정립 미세화제와 공정 Si 개량화제의 영향 (Effect of Grain Refiner and Eutectic Si Modifier on Casting Properties of Al-Si-Cu Alloy System Containing Recycled Scrap)

  • 성동현;김헌주
    • 한국주조공학회지
    • /
    • 제38권6호
    • /
    • pp.121-131
    • /
    • 2018
  • The effect of additives on the castability of the AC2BS aluminum alloy, which contains 35% recycled scrap, was investigated. For the wide utilization of the recycled scrap AC2BS aluminum alloy, the research results were compared to those with the AC2B virgin alloy, which is typical Al-Si-Cu alloy system. It was confirmed that the addition of Al-5%Ti-1%B increased the ${\alpha}$-Al nucleation temperature during solidification and decreased the grain size through cooling curve and microstructural observations of the recycled alloy. It was also found that an addition of Al-10%Sr decreased the eutectic Si growth temperature during the solidification process and modified the shape of the eutectic Si of the recycled alloy. The characteristics of fluidity, shrinkage and solidification crack strength were evaluated. For the AC2BS aluminum alloy containing 35% recycled scrap, both ${\alpha}$-Al grain refinement due to Ti-B and eutectic Si modifications due to Sr contributed to the improvement of the fluidity. The macro- shrinkage ratio increased with additions of both Al-10%Sr and Al-5%Ti-1%B and the micro-shrinkage ratio increased with the addition of Al-10%Sr but decreased with the addition of Al-5%Ti-1%B. The casting characteristics of TiB and Sr-treated AC2BS aluminum alloy containing 35% recycled scrap are similar to those of AC2B virgin alloy. The improvement of the solidification crack strength of the AC2BS aluminum alloy was possible by the reduction of the grain boundary the stress concentration through the enhancement by both ${\bullet}{\cdot}$-Al refinement and eutectic Si modification. More extensive use of the AC2BS aluminum alloy containing 35% recycled scrap can be expected in the future.

AC4A 알루미늄 합금의 주조특성에 미치는 미량 첨가원소의 영향 (Effect of Minor Additives on Casting Properties of AC4A Aluminum Casting Alloys)

  • 오승환;김헌주
    • 한국주조공학회지
    • /
    • 제37권5호
    • /
    • pp.148-156
    • /
    • 2017
  • The effects of minor additives on the casting properties of AC4A aluminum alloys were investigated. Measurements of the cooling curve and microstructure observations were conducted to analyze the effects of Ti-B and Sr minor elements during the solidification process. A fine grain size and an increase in the crystallization temperature for the ${\alpha}-Al$ solution were evident after the addition of 0.1wt% Al-5%Ti-1%B additive. The modification effect of the eutectic $Mg_2Si$ phase with the addition of 0.05% Al-10%Sr additive was prominent. A fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident. Fluidity, shrinkage and solidification-cracking tests were conducted to evaluate the castability of the alloy. The combined addition of Al-5%Ti-1%B and Al-10%Sr additives showed the maximum filling length owing to the effect of the fine ${\alpha}-Al$ grains. The macro-shrinkage ratio increased, while the micro-shrinkage ratio decreased with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives. The macro-shrinkage ratio was nearly identical, while the micro-shrinkage ratio increased with the addition of the Al-10%Sr additive. The tendency of the occurrence of solidification cracking decreased owing to the effect of the fine ${\alpha}-Al$ grains and the modification of the $Mg_2Si$ phase with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives.

Sr 개량처리된 사형주조 Al-7Si-0.35Mg 합금의 열처리에 따른 공정 Si상 변화거동 및 특성평가 (Behavior of Eutectic Si and Mechanical Properties of Sr Modified Al-7Si-0.35Mg alloy with Solid Solution Treatment for Sand Casting)

  • 김명균;황석민
    • 한국주조공학회지
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we focused on the correlation between the solidification structure, heat treatment and mechanical properties of the A356 alloy according to the conditions of Sr modification. The microstructural evolution of the eutectic Si and ${\alpha}-Al$ phase in the A356 alloy castings depending on the amount of Sr were investigated during solid solution heat treatment using an optical microscope, a scanning electron microscope and an image analyzer. In addition, tensile tests on the heat treated materials examined the relationship between the microstructure and the fracture surface. The as-cast A356 alloys under 40 ppm Sr showed an undermodified microstructure, but that of the added 60-80 ppm Sr had well modified structure of fine fibrous silicon. After solid solution treatment, the microstructure of the undermodified A356 alloy exhibited a partially spheroidized morphology, but the remainder showed the fragmentation of fibrous shaped silicon. The spheroidization of the eutectic silicon in the modified A356 alloys was completed during heat treatment, which was very effective in increasing the elongation. This is supported by the fracture surface in the tensile test.

재활용 AC4A 알루미늄 합금의 충격 및 피로 특성에 미치는 (Ti-B), Sr 첨가제의 영향 (Effect of (Ti-B) and Sr Additives on Impact and Fatigue Properties of Recycled AC4A Aluminum Casting Alloy)

  • 오승환;김헌주
    • 한국주조공학회지
    • /
    • 제39권4호
    • /
    • pp.61-74
    • /
    • 2019
  • The effects of Sr and (Ti-B) additives on the impact and fatigue properties of recycled (35% scrap content) AC4A aluminum alloy are investigated here. The acicular morphology of the eutectic Si phase of as-cast specimens was converted to the fibrous one with Sr additives. The grain size of the α-solid solution decreased by the addition of (Ti-B) additives. The crack initiation energy (Ei) of the impact absorption energy decreased due to the incorporation of an oxide film and inclusions depending on the scrap used. The modification of the eutectic Si morphology by Sr additives is considered as the main factor of the increase of the average impact absorption energy (Et). The addition of (Ti-B) additives contributed to an increase in the occurrence of crack deflections due to the refining of α-Al grains, resulting in improved fatigue properties.