• 제목/요약/키워드: European Framework Programme

검색결과 8건 처리시간 0.026초

SEISMIC ISOLATION OF LEAD-COOLED REACTORS: THE EUROPEAN PROJECT SILER

  • Forni, Massimo;Poggianti, Alessandro;Scipinotti, Riccardo;Dusi, Alberto;Manzoni, Elena
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.595-604
    • /
    • 2014
  • SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) is a Collaborative Project, partially funded by the European Commission in the $7^{th}$ Framework Programme, aimed at studying the risk associated to seismic-initiated events in Generation IV Heavy Liquid Metal reactors, and developing adequate protection measures. The project started in October 2011, and will run for a duration of three years. The attention of SILER is focused on the evaluation of the effects of earthquakes, with particular regards to beyond-design seismic events, and to the identification of mitigation strategies, acting both on structures and components design. Special efforts are devoted to the development of seismic isolation devices and related interface components. Two reference designs, at the state of development available at the beginning of the project and coming from the $6^{th}$ Framework Programme, have been considered: ELSY (European Lead Fast Reactor) for the Lead Fast Reactors (LFR), and MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) for the Accelerator-Driven Systems (ADS). This paper describes the main activities and results obtained so far, paying particular attention to the development of seismic isolators, and the interface components which must be installed between the isolated reactor building and the non-isolated parts of the plant, such as the pipe expansion joints and the joint-cover of the seismic gap.

RECENT DEVELOPMENTS IN EU SPACE POLICY AND LAW

  • 탄자 마송즈완
    • 항공우주정책ㆍ법학회지
    • /
    • 제25권2호
    • /
    • pp.231-247
    • /
    • 2010
  • This paper starts with a brief overview of the history of the European Space Agency and recalls some of its main features. Next, the gradual process of cooperation between ESA and the EU is outlined, leading to the creation of the Framework Agreement in 2004 and the adoption of the European Space Policy in 2007. The entry into force of the Lisbon Treaty in 2009 codified the space competence of the EU, and its implications are addressed. Lastly, some attention is paid to the issue of space security in Europe, through ESA's new SSA programme adopted in 2008, and to the relevance of the EU Council initiative for a Code of Conduct for Outer Space Activities in 2008. The paper ends with some conclusions.

  • PDF

유럽의 정보통신 기술개발 프로젝트 (RTD Projects of Information and Telecommunications in Europe)

  • 김형준
    • 전자통신동향분석
    • /
    • 제11권4호통권42호
    • /
    • pp.103-121
    • /
    • 1996
  • 본 고에서는 유럽연합(European Union)을 중심으로 범유럽 정보사회 건설을 향한 이들의 정보통신 기술개발 정책 및 구조에 대하여 정리한다. 먼저 통신시장 자유화에 대비한 유럽연합의 각종 통신규제철폐정책(Deregulation Policy)을 포함한 정보통신 기술개발 정책 방향에 대해 살펴보고, 유럽연합을 중심으로 진행중인 제4차 종합추진 계획(4th Framework Programme)과 본 계획하의 3대 정보통신 기술개발 프로젝트의 현황, 범유럽의 정보통신 내수시장활성화 및 국제경쟁력 확보를 위한 관련 프로젝트의 추진 동향을 기술한다.

Market, Firm, and Project-level Effects on the Innovation Impact of FP RTD Projects

  • Vonortas, Nicholas S.
    • STI Policy Review
    • /
    • 제1권2호
    • /
    • pp.69-88
    • /
    • 2010
  • This paper explores the determinants of the innovation impact of publicly funded R&D projects along three broad dimensions, namely project, firm and market-related factors. In addition to these factors we examine the attributes of the research result per se and aspects of the commercialization process. The observations from empirical and qualitative analyses are based on R&D projects funded by the Fifth and Sixth Research Framework Programmes of the European Union. Firm size, prior experience, innovation culture, the nature of the project itself, explicit intension to commercialize, consortium management and strategy are the factors with the strongest effect on project success, defined in terms of product/process innovation and/or technical knowledge creation. The paper provides important implications for the organization, objectives, and management of public programmes that fund R&D and for project and participant selection.

EU Water Framework Directive-River Basin Management Planning in Ireland

  • Earle, R.;Almeida, G.
    • Environmental Engineering Research
    • /
    • 제15권2호
    • /
    • pp.105-109
    • /
    • 2010
  • The European Union (EU) Water Framework Directive (WFD) (2000/60/EC) was transposed into Irish law by Statutory Instrument Nos. 722 of 2003, 413 of 2005 and 218 of 2009, which set out a new strategy and process to protect and enhance Ireland's water resources and water-dependent ecosystems. The Directive requires a novel, holistic, integrated, and iterative process to address Ireland's natural waters based on a series of six-year planning cycles. Key success factors in implementing the Directive include an in-depth and balanced treatment of the ecological, economic, institutional and cultural aspects of river basin management planning. Introducing this visionary discipline for the management of sustainable water resources requires a solemn commitment to a new mindset and an overarching monitoring and management regime which hitherto has never been attempted in Ireland. The WFD must be implemented in conjunction with a myriad of complimentary directives and associated legislation, addressing such key related topics as flood/drought management, biodiversity protection, land use planning, and water/wastewater and diffuse pollution engineering and regulation. The critical steps identified for river basin management planning under the WFD include: 1) characterization and classification of water bodies (i.e., how healthy are Irish waters?), 2) definition of significant water pressures (e.g., agriculture, forestry, septic tanks), 3) enhancement of measures for designated protected areas, 4) establishment of objectives for all surface and ground waters, and 5) integrating these critical steps into a comprehensive and coherent river basin management plan and associated programme of measures. A parallel WFD implementation programme critically depends on an effective environmental management system (EMS) approach with a plan-do-check-act cycle applied to each of the evolving six-year plans. The proactive involvement of stakeholders and the general public is a key element of this EMS approach.

EFFORTS TO PROGRESS IN THE HARMONIZATION OF L2 PSA DEVELOPMENT AND THEIR APPLICATIONS IN EUROPE - STATUS OF ACTIVITIES AND PERSPECTIVES AFTER THE FUKUSHIMA ACCIDENT

  • Raimond, E.
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.453-458
    • /
    • 2012
  • A major issue for all nuclear stakeholders is to keep the probability of circumstances that could lead to core damage as low as possible. In addition, for NPP, appropriate accident management provisions are to be implemented to limit the consequences associated with an accident. Development and application of L2 PSA is a structured way to demonstrate that such objectives are achieved. The paper presents the efforts recently done in Europe to harmonize some best-practices in that field, from research area to risk assessment. The Fukushima Daiichi accident reiterated the importance of these activities and the need to efficiently reinforce the NPP safety based on risk assessment conclusions. New perspectives in Europe are briefly presented.

The Development of Protocols for Equitable Testing and Evaluation in Ocean Energy - A Three-Year Strategy

  • Ingram, David M.;Villate, Jose Luis;Abonnel, Cyrille;Johnstone, Cameron
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.33-37
    • /
    • 2008
  • EquiMar (Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact) is one of the first round of energy projects under the European Commissions 7th Framework Programme (FP7). The three year EquiMar project aims to deliver a suite of protocols for the evaluation of both wave and tidal converters, harmonizing testing and evaluation procedures across the wide range of available devices, accelerating adoption through technology matching and improving the understanding of both environmental and economic impacts associated with the deployment of devices. The EquiMar protocols will cover site selection, initial design, scaling up of designs, the deployment of arrays and environmental impact assessment as well as economic issues. EquiMar will build on existing protocols, e.g. UK DTI Marine Renewables Development Fund (MRDF) protocols for wave and tidal energy, and engage with international standards setting activities, e.g. IEC TC114.

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.