• 제목/요약/키워드: Eurocode 3

검색결과 143건 처리시간 0.027초

터널 한계상태설계법 관련 연구 및 적용 동향 (Limit states design for tunnels: related researches and present state of application)

  • 김홍문;김동국;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제16권3호
    • /
    • pp.341-346
    • /
    • 2014
  • 대표적인 한계상태설계법은 AASHTO LRFD와 Eurocodes가 있으며, 토목구조물 설계에 폭넓게 적용되고 있다. 그러나 이러한 설계법이 터널설계에 적용될 경우에는 NATM 터널의 라이닝설계와 쉴드터널의 세그먼트 설계에만 제한적으로 적용되고 있다. 최근 유럽에서는 유로코드를 터널설계 전분야에 적용하기 위하여 기준개정(EG12)을 추진하였으나 다른 유로코드(EC2 및 EC3)에 미치는 영향 등을 고려하여 불가피하게 구성하지 않는 것으로 결정되었다. 그러나 여전히 한계상태설계법을 터널설계에 적용하기 위한 연구를 활발히 진행하고 있다. 한계상태설계법은 가까운 장래에 터널을 포함한 토목구조물 설계법의 주류가 될 것이다. 그러므로 Eurocode 7 등 국외 한계상태설계법에 대한 충분한 이해가 중요하며, 국제적인 연구동향을 파악하고 터널설계에 적용하기 위한 연구가 필요하다.

Seismic design of irregular space steel frames using advanced methods of analysis

  • Vasilopoulos, A.A.;Bazeos, N.;Beskos, D.E.
    • Steel and Composite Structures
    • /
    • 제8권1호
    • /
    • pp.53-83
    • /
    • 2008
  • A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.

An extension of an improved forced based design procedure for 3D steel structures

  • Peres, R.;Castro, J.M.;Bento, R.
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1115-1140
    • /
    • 2016
  • This paper proposes an extension of the Improved Forced Based Design procedure to 3D steel structures. The Improved Forced Based Design (IFBD) procedure consists of a more rational sequence of the design checks proposed in Eurocode 8 and involves a more realistic selection of the behaviour factor instead of selecting an empirical value based on the ductility class and lateral resisting system adopted. The design procedure was tested on a group of four 3D steel structures, composed by moment-resisting frames with three storeys height and the same plan configuration in all storeys. The plan configuration was defined in order to target lateral restrained or unrestrained systems as well as plan regular or irregular structures. The same group of structures was also designed according to the force-based process prescribed in Eurocode 8. The member sizes obtained through the two approaches were compared and the seismic performance was assessed through nonlinear static and time-history analyses. The limit states referred to structural and non-structural damage, considering the two levels design approach, which are the serviceability and the ultimate limit states, were examined. The results obtained reveal that the IFBD leads to more economical structures that still comply with the performance requirements prescribed in Eurocode 8.

Towards a consistant safety format of steel beam-columns: application of the new interaction formulae for ambient temperature to elevated temperatures

  • Vila Real, P.M.M.;Lopes, N.;Simoes da Silva, L.;Piloto, P.;Franssen, J.M.
    • Steel and Composite Structures
    • /
    • 제3권6호
    • /
    • pp.383-401
    • /
    • 2003
  • Two new formulae for the design of beam-columns at room temperature have been proposed into Eurocode 3, prEN 1993-1-1 (2002), and are the result of great efforts made by two working groups that followed different approaches, a French-Belgian team and an Austrian-German one. Under fire conditions the prEN 1993-1-2 (structural fire design) presents formulae, for the design of beam-columns based on the prENV 1993-1-1 (1992). In order to study the possibility of having, in part 1-1 and part 1-2 of the Eurocode 3, the same approach, a numerical research was made using the finite element program SAFIR, developed at the University of Liege for the study of structures subjected to fire.

A new model for transient heat transfer model on external steel elements

  • Chica, J.A.;Morente, F.
    • Steel and Composite Structures
    • /
    • 제8권3호
    • /
    • pp.201-216
    • /
    • 2008
  • The Eurocode system provides limited information regarding the structural fire design of external steel structures. Eurocode 1 provides thermal action for external member but only in steady-state conditions. On the other hand, Eurocode 3 provides a methodology to determine heat transfer to external steelwork, but there is no distinction in cross section shapes and, in addition, the calculated temperature distribution is assumed to be uniform in the cross section. This paper presents the results of a research carried out to develop a new transient heat transfer model for external steel elements to improve the current approach of the Eurocodes. This research was carried out as part of the project EXFIRE "Development of design rules for the fire behaviour of external steel structures", funded by the European Research Programme of the Research Fund for Coal and Steel (RFCS).

Cyclic mechanical model of semirigid top and seat and double web angle connections

  • Pucinotti, Raffaele
    • Steel and Composite Structures
    • /
    • 제6권2호
    • /
    • pp.139-157
    • /
    • 2006
  • In this paper, a cyclic mechanical model is presented to simulate the behaviour of top and seat with web angle beam-to-column connections. The introduced mechanical model is compared with Eurocode 3 Annex J, its extension, and with experimental data. To have a better insight regarding the actual response of the joints, available results of the experiments, carried out on full-scale top and seat angle joints under monotonic and cyclic loading, are first considered. Subsequently, a finite element model of the test setup is developed. The application of the proposed model, its comparisons with the experimental curves and with the Eurocode 3 Annex J and with its modification, clearly show the excellent quality of the model proposed.

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part II: Parametric study and comparison with the Eurocode 4 proposal

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.371-382
    • /
    • 2003
  • This paper analyses the response of rigid and semi-rigid steel-concrete composite joints under monotonic loading. The influence of some important parameters, such as the presence of column web stiffening and the mechanical properties of component materials, is investigated by using a three-dimensional finite element modelling based on the Abaqus code. Numerical and experimental responses of different types of composite joints are also compared with the analytical results obtained using the component approach proposed by Eurocode 4. The results obtained with this approach generally fit well with the numerical and experimental values in terms of strength. Conversely, some significant limits arise when evaluating initial stiffness and non-linear behaviour of the composite joint.

Reliability-based assessment of American and European specifications for square CFT stub columns

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Cheng
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.811-827
    • /
    • 2015
  • This paper presents a probabilistic investigation of American and European specifications (i.e., AISC and Eurocode 4) for square concrete-filled steel tubular (CFT) stub columns. The study is based on experimental results of 100 axially loaded square CFT stub columns from the literature. By comparing experimental results for ultimate loads with code-predicted column resistances, the uncertainty of resistance models is analyzed and it is found that the modeling uncertainty parameter can be described using random variables of lognormal distribution. Reliability analyses were then performed with/without considering the modeling uncertainty parameter and the safety level of the specifications is evaluated in terms of sufficient and uniform reliability criteria. Results show that: (1) The AISC design code provided slightly conservative results of square CFT stub columns with reliability indices larger than 3.25 and the uniformness of reliability indices is no better because of the quality of the resistance model; (2) The uniformness of reliability indices for the Eurocode 4 was better than that of AISC, but the reliability indices of columns designed following the Eurocode 4 were found to be quite below the target reliability level of Eurocode 4.

압축을 받는 냉간성형 C-형강 기둥의 온도상승에 따른 국부좌굴 특성 (Local Buckling Behavior of Cold-Formed Channel Columns under Compression at Elevated Temperatures)

  • 백태순;강성덕;강문명
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.433-442
    • /
    • 2004
  • 본 연구는 Eurogode 3 Part 1.3을 근거하여 온도증가에 따른 압축을 받는 냉간성형 C-형강 기둥의 플랜지와 웨브의 탄성국부좌굴 응력 해석 프로그램을 개발하였다. 고온에서 응력-변형률 관계식은 Eurocode 3 Part 1.2를 근거하였다. 온도증가에 따른 압축을 받는 냉간성형 C-형강의 임계온도와 탄성국부좌굴 응력은 본 연구에서 개발한 컴퓨터 프로그램에 의해 해석하였고, 해석 예에 대한 비교 고찰을 하였다.

Stability analyses of a cylindrical steel silo with corrugated sheets and columns

  • Sondej, Mateusz;Iwicki, Piotr;Wojcik, Michal;Tejchman, Jacek
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.147-166
    • /
    • 2016
  • The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). Initial imperfections in the form of a first eigen-mode for different wall loads and from 'in-situ' measurements with horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some recommendations for the silo dimensioning were elaborated.