• Title/Summary/Keyword: Euphotic Depth

Search Result 26, Processing Time 0.028 seconds

Seasonal Variation of Water Quality in a Shallow Eutrophic Reservoir (얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.180-192
    • /
    • 2004
  • This study was carried out to assess the seasonal variation of water quality and the effect of pollutant loading from watershed in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004, Stable thermocline which was greater than $1^{\circ}C$ per meter of the water depth formed in May, and low DO concentration (< 2 mg $O_2\;L^{-1}$) was observed in the hypolimnion from May to September, 2003. The ratio of euphotic depth to mixing depth ($Z_{eu}/Z_{m}$) ranged 0.2 ${\sim}$ 1.1, and the depth of the mixed layer exceeded that of the photic layer during study period, except for May when $Z_{eu}$ and $Z_{m}$ were 4 and 4.3 m, respectively. Most of total nitrogen, ranged 1.1 ${\sim}$ 4.5 ${\mu}g\;N\;L^{-1}$, accounted for inorganic nitrogen (Avg, 58.7%), and sharp increase of $NH_3$-N Hand $NO_3$-N was evident during the spring season. TP concentration in the water column ranged 43.9 ${\sim}$ 126.5 ${\mu}g\;P\;L^{-1}$, and the most of TP in the water column accounted for POP (Avg. 80%). During the study period, DIP concentration in the water column was &;lt 10 ${\mu}g\;P\;L^{-1}$ except for July and August when DIP concentration in the hypolimnion was 22.3 and 56.7 ${\mu}g\;P\;L^{-1}$, respectively. Increase of Chl. a concentration observed in July (99 ${\mu}g\;L^{-1}$) and November 2003 (109 ${\mu}g\;L^{-1}$) when P loading through two inflows was high, and showed close relationship with TP concentration (r = 0.55, P< 0.008, n = 22). Mean Chl. a concentration ranged from 13.5 to 84.5 mg $L^{-1}$ in the water column, and the lowest and highest concentration was observed in February 2004 (13.5 ${\pm}$ 1.0 ${\mu}g\;L^{-1}$) and November 2003 (84.5 ${\pm}$29.0 ${\mu}g\;L^{-1}$), respectively. TP concentration in inflow water increased with discharge (r = 0.69, P< 0.001), 40.5% of annual total P loading introduced in 25 July when there was heavy rainfall. Annual total P loading from watershed was 159.0 kg P $yr^{-1}$, and that of DIP loading was 126.3 kg P $yr^{-1}$ (77.7% of TP loading. The loading of TN (5.0ton yr-1) was 30 times higher than that of TP loading (159.0 kg P yr-1), and the 78% of TN was in the form of non-organic nitrogen, 3.9 ton $yr^{-1}$ in mass. P loading in Shingu reservoir was 1.6 g ${\cdot}$ $m^{-2}$ ${\cdot}$ $yr^{-1}$, which passed the excessive critical loading of Vollenweider-OECD critical loading model. The results of this study indicated that P loading from watershed was the major factor to cause eutrophication and temporal variation of water quality in Shingu reservoir Decrease by 71% in TP loading (159 kg $yr^{-1}$) is necessary for the improvement of mesotrophic level. The management of sediment where tine anaerobic condition was evident in summer, thus, the possibility of P release that can be utilized by existing algae, may also be considered.

Primary Productivity Measurement Using Carbon-14 and Nitrogenous Nutrient Dynamics in the Southeastern Sea of Korea (한국 동남해역의 해양기초생산력 (C$^{14}$ )과 질소계 영양염 동적 관계)

  • 심재형;박용철
    • 한국해양학회지
    • /
    • v.21 no.1
    • /
    • pp.13-24
    • /
    • 1986
  • The daily net primary production by phytoplankton in the southeastern sea of Korea in October 1985 ranged from 0.7 to 2.7 gCm$\^$-2/ d$\^$-1/ and averaged to be 1.3 gCm$\^$-2/ d$\^$-1/. Surface total chlorophyll ranged from 0.97 to 3.59mg chlm$\^$-3/. Primary production by nano-phytoplankton(〈20$\mu\textrm{m}$) ranged from 43 to 97% in the surface layer. Optimum light intensity(Iopt)was around 300 to 700${\mu}$Es$\^$-1/m$\^$-1/. Surface primary production from 9:00 to 15:00 h was evidently inhibited by strong light intensity beyond the Iopt. Phytoplankton near the base of euphotic zone(30-40m) showed extremely low Iopt suggesting adaptation to a low light environment. Since Iopt represents the history of light experience of phytoplankton at a given depth, the extent of variation in I of phytoplankton at different depth seems to be related to the in tensity of turbulence mixing in the surface mixed layer. From the present study, ammonium excretion by macrozooplankton (〉350$\mu\textrm{m}$) contributes from 3 to 19% of daily total nitrogen requirement by phytoplandton in this area. Calculation of upward flux of nitrate to the surface mixed layer from the lower layer, based on the simple diffusion model, approximates 3% of nitrogen requirement by phytoplankton. However, large portion of nitrogen requirement by phytoplankton remains unexplained in this area. In upwelling area near the coast, adjective flux might be the major source for the nitrogen requirement by phytoplankton. This study suggests that the major nitrogen source for the phytoplankton growth might come from the pelagic regeneration by nano-and micro-sized heterotrophic plandkon. Enhancement of primary production during the passage of the warm Tsushima Current is discussed in relation with nutrient dynamics and hydrlgraphic processes in this area.

  • PDF

Estimate of Particulate Organic Carbon Export Flux Using $^{234}Th/^{238}U$ Disequilibrium in the Southwestern East Sea During Summer (동해 서남해역에서 여름철 $^{234}Th/^{238}U$ 비평형을 이용한 입자상 유기탄소 침강플럭스 추정)

  • Kim, Dong-Seon;Choi, Man-Sik;Oh, Hae-Young;Kim, Kyung Hee;Noh, Jae-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Export fluxes of particulate organic carbon were estimated for the first time by using $^{234}Th/^{238}U$ disequilibrium in the southwestern East Sea during August 2007. They were calculated by multiplying POC/$^{234}Th_p$ ratios of sinking particles (larger than 0.7 ${\mu}m$) obtained from 150-200 m water depths to $^{234}Th$ fluxes that were estimated by integrating $^{234}Th/^{238}U$ disequilibrium from surface to 100 m water depth. Export fluxes ranged from 14 to 505 mg C $m^{-2}$ $day^{-1}$, with the highest value at station A2 and the lowest value at station D4. Primary production was well correlated with export flux, indicating that it was a major factor controlling export flux. Export flux in the East Sea was generally higher than those estimated in the open ocean and similar to or somewhat higher than those in the continental marginal seas. Export flux/primary production (EF/PP) ratios varied from 0.29 to 0.62, with an average of 0.43 and were somewhat higher in the basin area than in the coastal area. EF/PP ratio in the East Sea was rather similar to those estimated in the North Sea and Chukchi Sea, but much higher than those in the Labrador Sea, Barents Sea, and Gulf of Lions. Therefore, the East Sea is one of the major areas where a large amount of organic carbon produced in the euphotic zone sinks into the deep layer below 200 m water depth.

Bioecological Characteristics of Coral Habitats around Moonsom, Cheju Island, Korea I. Environment Properties and Community Structures of Phytoplankton (제주도 문섬 산호서식지 주변의 생물생태학적 특성 I. 환경특성과 식물플랑크톤의 군집구조)

  • Choa, Jong-Hun;Lee, Joon-Baek
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • Environmental factors and phytoplankton community have been bimonthly investigated in order to clarify the bioecological characteristics of coral habitats around Moonsom at the southern Cheju Island from September 1995 to July 1996. Annual mean temperature and annual mean salinity were $17.4^{\circ}C$ and 34.06 psu, respectively, showing lower temperature-higher salinity in winter and higher temperature-lower salinity in summer, which means such conditions are inadequate for coral reef formation. Nutrient concentrations represent that total nitrogen ranged from $0.07{\sim}10.08\;{\mu}M$, phosphate from $0.05{\sim}1.70\;{\mu}M$, and silicate from $3.08{\sim}21.86\;{\mu}M$. The N/P ratio showed the range of 9.59-10.60 with decreasing offshore-ward, which means the phytoplankton community could be limited by nitrogen sources. Annual mean euphotic depth was 32.0m (18.9m-48.6m) with difference according to season and reveals the close relationship with the depth of coral distribution. Chlorophyll a concentrations of phytoplankton ranged from $0.12{\sim}1.51\;{\mu}g\;L^{-1}$ and standing crops from $1.5{\times}10^3{\sim}7.0{\times}10^5\;cells\;L^{-1}$, showing higher at inshore than at offshore with a blooming in May. A total of 128 species of phytoplankton occurred in all stations, representing 99 spp. of diatoms, 26 spp. of dinoflagellates, 2 spp. of silicoflagellates and 1 sp. of blue-green algae. Diatoms are main taxa in all seasons except for occupying by dinoflagellates in summer. Among dominant species, fParalia sulcata (Ehrenberg) Cleve and Cylindrotheca closterium (Ehrenberg) Lewin & Reimann were predominant and are likely to be main food sources for coral community. Annual mean species diversity index (H') was 1.84, showing lower than around the coast line of Cheju Island.

  • PDF

An Assessment of Primary Productivity Determined by Stable Isotopes and Diving-PAM in the Pyropia Sea Farms of the Manho (Jindo-Haenam) Region on the Southwestern Coast of the Korean Peninsula (안정동위원소 및 Diving-PAM을 이용한 남서해안 만호해역 (진도-해남) 김 양식장에서의 일차 생산력)

  • Kim, Jeong Bae;Lee, Won-Chan;Kim, Hyung Chul;Hong, Sokjin
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.1
    • /
    • pp.18-29
    • /
    • 2016
  • The effects of water temperature, salinity, water column nutrient contents, and phytoplankton primary productivity on pigment composition and concentration, as well as primary productivity of Pyropia yezoensis Ueda purple lavers were studied at the primary cultivation areas in the Manho (Jindo-Haenam) region on the southwestern coast of Korea in March 2014. The water temperature was $9.1{\sim}9.6^{\circ}C$, salinity was 32.5~33.1, and transparency was 0.7~1.5 m. The shallow euphotic depth resulted from the high turbidity. Water column dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and silicate concentrations were $3.59{\sim}5.73{\mu}M$, $0.16{\sim}0.41{\mu}M$, and $12.41{\sim}13.94{\mu}M$, respectively. Chlorophyll a (Chl a) concentration was $0.51{\sim}1.25{\mu}g\;L^{-1}$. Nanoplankton ($0.7{\sim}20{\mu}m$ size class) accounted for 58% of the total Chl a concentration. Fucoxanthin was the dominant photosynthetic pigment at all sites. Microplankton ($20{\sim}200{\mu}m$ size class) accounted for 64% of the total fucoxanthin concentration. The primary productivity of phytoplankton was $57.72{\pm}4.67(51.05{\sim}66.71)mg\;C\;m^{-2}d^{-1}$. The nanoplankton ($0.7{\sim}20{\mu}m$ size class) accounted for 77% of the total phytoplankton primary productivity. The calculated phytoplankton primary productivity was $11,337kg\;C\;d^{-1}$. The primary productivity of Pyropia blades was $1,926{\pm}192(1,102{\sim}2,597)mg\;C\:m^{-2}d^{-1}$, i.e., calculated as $39,295kg\;C\;d^{-1}$. The total primary productivity of phytoplankton and Pyropia blades was $50,632kg\;C\;d^{-1}$. The primary productivity of Pyropia blades was 3.5 times greater than that of phytoplankton in the Manho region on the southwestern coast of Korea.

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.