• Title/Summary/Keyword: Eupahusia pacifica

Search Result 1, Processing Time 0.015 seconds

Species Composition and Spatial Distribution of Euphausiids of the Yellow Sea and Relationships with Environmental Factors

  • Yoon, Won-Duk;Yang, Joon-Yong;Lim, Dong-Hyun;Cho, Sung-Hwan;Park, Gyung-Soo
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.11-29
    • /
    • 2006
  • We investigated species composition and spatial distribution of the euphausiid community in the Yellow Sea and identified the relationship with environmental factors (temperature, salinity, chlorophyll $\alpha$, nitrate, phosphate, and silicate) using bimonthly data from June, 1997 to April, 1998. The environment varied during the sampling period. In warm seasons, thermocline was well developed rendering lower temperature and higher salinity and nutrient concentrations in the bottom layer. During cold seasons the water column was well mixed and no such vertical stratification was noted. Horizontal distribution of temperature, however, differed slightly between near-coast and offshore areas because of the shallow depth of the Yellow Sea, and between southern and northern areas because of the intrusion of water masses such as Yellow Sea Warm Current and Changjiang River Diluted Water. Four euphausiid species were identified: Euphausia pacifica, E. sanzoi, Pseudeuphausia sp. and Stylocheron affine. E. sanzoi and S. affine were collected, just one juvenile each, from the southern area in June and December, respectively. Pseudeuphausia sp. were collected in the eastern area all the year round except June. E. pacifica occurred at the whole study area and were the predominant species, representing at least 97.6% of the euphausiid abundance. Further, the distribution pattern of the species was varied in regards to developmental stages (adult, furcilia, calyptopis, egg). From spring to fall, E. pacifica adults were abundant in the central area where the Yellow Sea Bottom Cold Water prevailed. Furcilia and calyptopis extended their distribution into nearly all the study area during the same period. From late fall to winter, adults were found at the near-coastal are a with similar pattern for furcilia and calyptopis. The distribution pattern of E. pacifica was consistent regarding temperature, salinity, and three nutrients during the sampling period, whereas chlorophyll $\alpha$ showed a different pattern according to the developmental stages. The nutrients should indirectly affect via chlorophyll $\alpha$ and phytoplankton concentration. With respect to these results, we presented a scenario about how the environmental factors along with the water current affect the distribution of E. pacifica in the Yellow Sea.