• Title/Summary/Keyword: Euler formula

Search Result 70, Processing Time 0.025 seconds

Buckling behavior of rectangular plates under uniaxial and biaxial compression

  • Bourada, Mohamed;Bouadi, Abed;Bousahla, Abdelmoumen Anis;Senouci, Amel;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.113-123
    • /
    • 2019
  • In the classical stability investigation of rectangular plates the classical thin plate theory (CPT) is often employed, so omitting the transverse shear deformation effect. It seems quite clear that this procedure is not totally appropriate for the investigation of moderately thick plates, so that in the following the first shear deformation theory proposed by Meksi et al. (2015), that permits to consider the transverse shear deformation influences, is used for the stability investigation of simply supported isotropic rectangular plates subjected to uni-axial and bi-axial compression loading. The obtained results are compared with those of CPT and, for rectangular plates under uniaxial compression, a novel direct formula, similar to the conventional Bryan's expression, is found for the Euler stability stress. The accuracy of the present model is also ascertained by comparing it, with model proposed by Piscopo (2010).

Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon

  • Bonopera, Marco;Chang, Kuo-Chun;Lin, Tzu-Kang;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The influence of prestress force on the fundamental frequency and static deflection shape of uncracked Prestressed Concrete (PC) beams with a parabolic bonded tendon was examined in this paper. Due to the conflicts among existing theories, the analytical solutions for properly considering the dynamic and static behavior of these members is not straightforward. A series of experiments were conducted for a total period of approximately 2.5 months on a PC beam made with high strength concrete, subsequently and closely to the 28 days of age of concrete. Specifically, the simply supported PC member was short term subjected to free transverse vibration and three-point bending tests during its early-age. Subsequently, the experimental data were compared with a model that describes the dynamic behavior of PC girders as a combination of two substructures interconnected, i.e., a compressed Euler-Bernoulli beam and a tensioned parabolic cable. It was established that the fundamental frequency of uncracked PC beams with a parabolic bonded tendon is sensitive to the variation of the initial elastic modulus of concrete in the early-age curing. Furthermore, the small variation in experimental frequency with time makes doubtful its use in inverse problem identifications. Conversely, the relationship between prestress force and static deflection shape is well described by the magnification factor formula of the "compression-softening" theory by assuming the variation of the chord elastic modulus of concrete with time.

Comparative study of finite element analysis and generalized beam theory in prediction of lateral torsional buckling

  • Sharma, Shashi Kant;Kumar, K.V. Praveen;Akbar, M. Abdul;Rambabu, Dadi
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.59-73
    • /
    • 2022
  • In the construction industry, thin-walled frame elements with very slender open cross-sections and low torsional stiffness are often subjected to a complex loading condition where axial, bending, shear and torsional stresses are present simultaneously. Hence, these often fail in instability even before the yield capacity is reached. One of the most common instability conditions associated with thin-walled structures is Lateral Torsional Buckling (LTB). In this study, a first order Generalized Beam Theory (GBT) formulation and numerical analysis of cold-formed steel lipped channel beams (C80×40×10×1, C90×40×10×1, C100×40×10×1, C80×40×10×1.6, C90×40×10×1.6 and C100×40×10×1.6) subjected to uniform moment is carried out to predict pure Lateral Torsional Buckling (LTB). These results are compared with the Finite Element Analysis of the beams modelled with shell elements using ABAQUS and analytical results based on Euler's buckling formula. The mode wise deformed shape and modal participation factors are obtained for comparison of the responses along with the effect of varying the length of the beam from 2.5 m to 10 m. The deformed shapes of the beam for different modes and GBTUL plots are analyzed for comparative conclusions.

Number of Scatterings in Random Walks

  • Kwang-Il Seon;Hyung-Joe Kwon;Hee-Gyeong Kim;Hyeon Jeong Youn
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.287-292
    • /
    • 2023
  • This paper investigates the number of scatterings a photon undergoes in random walks before escaping from a medium. The number of scatterings in random walk processes is commonly approximated as τ + τ2 in the literature, where τ is the optical thickness measured from the center of the medium. However, it is found that this formula is not accurate. In this study, analytical solutions in sphere and slab geometries are derived for both optically thin and optically thick limits, assuming isotropic scattering. These solutions are verified using Monte Carlo simulations. In the optically thick limit, the number of scatterings is found to be 0.5 τ2 and 1.5 τ2 in a sphere and slab, respectively. In the optically thin limit, the number of scatterings is ≈ τ in a sphere and ≈ τ (1 - γ - ln τ + τ) in a slab, where γ ≃ 0.57722 is the Euler-Mascheroni constant. Additionally, we present approximate formulas that reasonably reproduce the simulation results well in intermediate optical depths. These results are applicable to scattering processes that exhibit forward and backward symmetry, including both isotropic and Thomson scattering.

A Study on the Design of Artificial Stream for Riverbed Filtration in Multi-purpose Filtration Pond (다목적 여과저류지에서의 하상여과용 인공하천 설계연구)

  • Sohn, Dong-Hoon;Park, Jae-Young;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.536-543
    • /
    • 2011
  • In order to find the best design of artificial stream for the riverbed filtration in multi-purpose filtration pond, a mathematical model was developed employing the energy line and the Manning's formula and was analyzed by the Euler's technique. Various design factors were investigated through scenario analyses of the artificial stream using the model. Results showed that the appropriate slope of the stream bottom was 2/10,000 and the appropriate infiltration rate at the streambed was $2.5m^3/m^2-day$ for the pond with the area of 100 ha, and that the Manning's roughness coefficient in this case was expected to be about 0.026 and the maximum water-depth was less than 1m. It was also shown that the longer the artificial stream the more advantageous it became for the riverbed filtration. Furthermore, results showed that it was not an efficient way to prevent clogging of the streambed by increasing the flow velocity of the stream and that the performance was higher near a weir with a large head drop.

A Study on Effective Width of Press-Braked Steel Plates with a Free Edge (둥근 모서리를 갖는 절곡 자유돌출판의 유효폭 분석)

  • Choi, Byung Ho;Cho, Kwang Il;Kim, Tae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.355-363
    • /
    • 2016
  • This study numerically investigates buckling behavior of press braked steel plates with a free edge that consists of the upper flange of U-shaped box girder. Since the press-braked plates include a rounded edge, the effective width to thickness ratio of the press-braked upper flange is obscure to determine the nominal compressive strength. This study performed 3D finite element analyses to evaluate an equivalent effective width of cold-formed plate with a free edge. Through the parametric numerical analyses, the elastic buckling stresses of the rounded corner plates were compared with those of general flat plates and then, the equivalent effective width has been estimated. A comparative study with Euler buckling formula speculated in the domestic design specifications has been conducted.

Averaging TRIAD Algorithm for Attitude Determination (평균 TRIAD를 이용한 자세 결정)

  • Kim, Dong-Hoon;Lee, Henzeh;Oh, Hwa-Suk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • In general, accurate attitude information is essential to perform the mission. Two algorithms are well-known to determine the attitude through two or more vector observations. One is deterministic method such as TRIAD algorithm, the other is optimal method such as QUEST algorithm. This Paper suggests the idea to improve performance of the TRIAD algorithm and to determine the attitude by combination of different sensors. First, we change the attitude matrix to Euler angle instead of using orthogonalization method and also use covariance in place of variance, then apply an unbiased minimum variance formula for more accurate solutions. We also suggest the methodology to determine the attitude when more than two measurements are given. The performance of the Averaging TRIAD algorithm upon the combination of different sensors is analyzed by numerical simulation in terms of standard deviation and probability.

Design load-carrying capacity estimates and an improved wooden shore setup

  • Huang, Y.L.;Lin, Y.C.;Lee, C.F.;Chen, H.J.;Yen, T.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.167-186
    • /
    • 2004
  • The design load-carrying capacities of wooden shores depend on factors, such as the wood species and properties, and construction methods. This paper focuses on the construction methods, including an upright single shore, group of upright shores, group of inclined shores, butt connections and lap connections. This paper reports experiments to obtain critical loads and then developed an empirical equation based on Euler' formula for the critical loads and design load-carrying capacities. The test results show that the critical loads for an upright single wooden shore are greater than the average values for a group of upright shores, and the latter are greater than the average values for a group of inclined shores. Test results also show that the critical loads become smaller when butt or lap connections are used, butt connections possessing greater critical loads than lap connections. Groups of inclined shores are very popular at work sites because they have some practical advantages even though they actually possess inferior critical loads. This paper presents an improved setup for constructing groups of inclined shores. With this method, the inclined shores have larger critical loads than upright shores. The design load-carrying capacities were obtained by multiplying the average critical loads by a resistance factor (or strength reduction factor, ${\phi}$) that were all smaller than 1. This article preliminarily suggests ${\phi}$ factors based on the test results for the reference of engineers or specification committees.

Analysis of Added Resistance using a Cartesian-Grid-based Computational Method (직교격자 기반 수치기법을 이용한 부가저항 해석)

  • Yang, Kyung-Kyu;Lee, Jae-Hoon;Nam, Bo-Woo;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • In this paper, an Euler equation solver based on a Cartesian-grid method and non-uniform staggered grid system is applied to predict the ship motion response and added resistance in waves. Water, air, and solid domains are identified by a volume-fraction function for each phase and in each cell. For capturing the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with a weighed line interface calculation (WLIC) method. The volume fraction of solid body embedded in a Cartesian-grid system is calculated by a level-set based algorithm, and the body boundary condition is imposed by volume weighted formula. Added resistance is calculated by direct pressure integration on the ship surface. Numerical simulations for a Wigley III hull and an S175 containership in regular waves have been carried out to validate the newly developed code, and the ship motion responses and added resistances are compared with experimental data. For S175 containership, grid convergence test has been conducted to investigate the sensitivity of grid spacing on the motion responses and added resistances.

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.