• Title/Summary/Keyword: Euler buckling

Search Result 99, Processing Time 0.026 seconds

Study of Buckling Evaluation for the connecting rod of the engine (엔진 커넥팅로드의 좌굴평가에 대한 연구)

  • 이문규;문희욱;이형일;이태수;신성원;장훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.677-680
    • /
    • 2004
  • This study investigates the buckling evaluation of connecting rods used in the diesel engine through finite element analysis. The Rankine formula, which is modified from classical Euler‘s formula, has been widely accepted in automotive industry to evaluate the buckling of connecting rods. Apparently, this formula is most suitable for the straight and idealized rod shape, and over-simplifies the geometric complexity associated with connecting rods. The subspace iteration method in FEA is used to predict the critical buckling stress of a connecting rod with certain slenderness ratio. To create models with various slenderness ratios for shank portion in the rod, the automatic meshing preprocessor was implemented. Results from FEA were verified by the experiments, in which the embedded strain gages measured for the connecting rod running at 4000rpm. The result indicates that the buckling prediction curve through FEA and experiment is effectively different from the curve of classical Rankine formula.

  • PDF

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

Buckling analysis of embedded concrete columns armed with carbon nanotubes

  • Arani, Ali Jafarian;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.567-578
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli and Timoshenko beam theories. The characteristics of the equivalent composite being determined using mixture rule. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

Buckling Analysis of Guide Tube in the Spent Fuel Skeleton (핵연료 집합 구조체의 가이드튜브에 대한 죄굴응력 해석)

  • 김영환;윤지섭;정재후;홍동희;송상호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.413-416
    • /
    • 2000
  • The spent fuel skeleton is processed in the cutting processing after compacting. If the cutting length is processed in the same interval length. The spent fuel skeleton is stayed on the connection of bottom nozzle and guide tube. In the case, because the compressive stress is loaded along the length, the guide tube is generated the buckling stress and the deforming. But the deformed guide tube interrupted the guide tube inserted through compressive room. therefore, it is experimented for the optimum buckling stress and the preventing of guide deformed. This paper is predicted the all over buckling stress of the spent fuel skeleton by using experiment. The guide of Spent fuel skeleton have buckling characteristics of the medium column. The experiment and analysis is conducted by the comparing among the equation of Euler, Johnson and Engresser. The fittest one of method is Engresser equation.

  • PDF

Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles

  • Zamanian, Mohammad;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.43-57
    • /
    • 2017
  • The use of nanotechnology materials and applications in the construction industry should be considered for enhancing material properties. However, the nonlinear buckling of an embedded straight concrete columns reinforced with silicon dioxide ($SiO_2$) nanoparticles is investigated in the present study. The column is simulated mathematically with Euler-Bernoulli and Timoshenko beam models. Agglomeration effects and the characteristics of the equivalent composite are determined using Mori-Tanaka approach. The foundation around the column is simulated with spring and shear layer. The governing equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of $SiO_2$ nanoparticles, geometrical parameters and agglomeration on the buckling of column are investigated. Numerical results indicate that considering agglomeration effects leads to decrease in buckling load of structure.

Hierarchical theories for a linearised stability analysis of thin-walled beams with open and closed cross-section

  • Giunta, Gaetano;Belouettar, Salim;Biscani, Fabio;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.253-271
    • /
    • 2014
  • A linearised buckling analysis of thin-walled beams is addressed in this paper. Beam theories formulated according to a unified approach are presented. The displacement unknown variables on the cross-section of the beam are approximated via Mac Laurin's polynomials. The governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the expansion order. Classical beam theories such as Euler-Bernoulli's and Timoshenko's can be retrieved as particular cases. Slender and deep beams are investigated. Flexural, torsional and mixed buckling modes are considered. Results are assessed toward three-dimensional finite element solutions. The numerical investigations show that classical and lower-order theories are accurate for flexural buckling modes of slender beams only. When deep beams or torsional buckling modes are considered, higher-order theories are required.

Buckling Loads of Tapered Columns due to Dynamic Concept (동적개념에 의한 변단면 기둥의 좌굴하중)

  • 이병구;우정안
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.97-105
    • /
    • 1992
  • The main purpose of this paper is to present the buckling loads of tapered columns due to dynamic concept. The ordinary differential equation governing the bucking loads for tapered columns is derived on the basis of dynamic concept. Three kinds of cross sectional shape are considered in the governing equation. The Improved Euler method and Determinant Search method are used to perform the integration of the differential equation and to determine the buckling loads, respectively. The hinged-hinged, hinged-clamped, clamped-clamped and free-clamped end constraints are applied in numerical examples. The buckling loads are reported as the function of section ratio, and the effects of cross-sectional shapes are investigated. The buckling load equation, which are fitted by numerical data, are proposed as a function of section ratio. It is expected that these equations can be utilized in structural engineering field.

  • PDF

Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity

  • Akgoz, Bekir;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • The buckling problem of linearly tapered micro-columns is investigated on the basis of modified strain gradient elasticity theory. Bernoulli-Euler beam theory is used to model the non-uniform micro column. Rayleigh-Ritz solution method is utilized to obtain the critical buckling loads of the tapered cantilever micro-columns for different taper ratios. Some comparative results for the cases of rectangular and circular cross-sections are presented in graphical and tabular form to show the differences between the results obtained by modified strain gradient elasticity theory and those achieved by modified couple stress and classical theories. From the results, it is observed that the differences between critical buckling loads achieved by classical and those predicted by non-classical theories are considerable for smaller values of the ratio of the micro-column thickness (or diameter) at its bottom end to the additional material length scale parameters and the differences also increase due to increasing of the taper ratio.

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions

  • Lei-Lei Gan;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.541-551
    • /
    • 2023
  • Snap-buckling is one of the main failure modes of structures, because it will lead to the reduction of structural bearing capacity, durability loss and even structural damage. Boundary condition plays an important role in the research of engineering mechanics. Further discussion on the boundary conditions problems will help to analyze the dynamic and static behavior of structures more accurately. Therefore, in order to understand the dynamic and static behavior of curved beams more comprehensively, this paper mainly studies the nonlinear snap-through buckling and forced vibration characteristics of functionally graded graphene reinforced composites (FG-GPLRCs) curved beams with two different boundary conditions (including clamped-hinged and hinged-hinged) using Euler-Bernoulli beam theory (E-BBT). In addition, the effects of the curved beam radius, the GLPs distributions, number of GLPs layers, the mass fraction of GLPs and elastic foundation parameters on the nonlinear snap-through buckling and forced vibration behavior are discussed respectively.