• Title/Summary/Keyword: Euler Characteristic

Search Result 74, Processing Time 0.026 seconds

COMPUTATION OF NIELSEN NUMBERS FOR CERTAIN MAPS OF HYPERBOLIC SURFACES

  • Kim, Seung Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.243-249
    • /
    • 2015
  • Let X be a closed surface for which the Euler characteristic $_{\mathcal{X}}(X)$ is negative, and let $f:X{\rightarrow}X$ be a self-map that is not surjective. In this short paper, we prove that we can compute the Nielsen number of f, N(f), under some algebraic conditions.

PARTIALLY ASHPHERICAL MANIFOLDS WITH NONZERO EULER CHARACTERISTIC AS PL FIBRATORS

  • Im, Young-Ho;Kim, Yong-Kuk
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.99-109
    • /
    • 2006
  • Approximate fibrations form a useful class of maps. By definition fibrators provide instant detection of maps in this class, and PL fibrators do the same in the PL category. We show that every closed s-hopfian t-aspherical manifold N with sparsely Abelian, hopfian fundamental group and X(N) $\neq$ 0 is a codimension-(t + 1) PL fibrator.

SIZE DISTRIBUTION OF ONE CONNECTED COMPONENT OF ELLIPTIC RANDOM FIELD

  • Alodat, M.T.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.4
    • /
    • pp.479-488
    • /
    • 2007
  • The elliptic random field is an extension to the Gaussian random field. We proved a theorem which characterizes the elliptic random field. We proposed a heuristic approach to derive an approximation to the distribution of the size of one connected component of its excursion set above a high threshold. We used this approximation to approximate the distribution of the largest cluster size. We used simulation to compare the approximation with the exact distribution.

SOME MANIFOLDS WITH NONZERO EULER CHARACTERISTIC AS PL FIBRATORS

  • Im, Young-Ho
    • Honam Mathematical Journal
    • /
    • v.29 no.3
    • /
    • pp.327-339
    • /
    • 2007
  • Approximate fibrations form a useful class of maps. By definition fibrators provide instant detection of maps in this class, and PL fibrators do the same in the PL category. We show that every closed s-hopfian t-aspherical manifold N with some algebraic conditions and X(N) $\neq$ 0 is a codimension-(2t + 2) PL fibrator.

Numerical Study of Sound Radiation from curved intake (굴곡형 흡입관에서의 소음 방사 해석)

  • Shim I. B.;Lee D. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.88-94
    • /
    • 2002
  • Curved intakes are commonly used from commercial aircraft to military missile. Sound radiation from the intake of air vehicle affects cabin noise, community noise and military detection. In this paper, Sound radiation from curved intake is computed using the high order, high resolution scheme. The generalized characteristic boundary conditions, adaptive nonlinear artificial dissipation model and conformal mapping for high order, high resolution scheme are used. The geometric change of curved intake and the frequency of acoustic source are considered. Two dimensional Euler equations are solved for theses analyses.

  • PDF

Vibration Damping Analysis of Multi-Layered Viscoelastic Material (다층 점탄성재료의 진동감쇠 특성에 관한 연구)

  • 윤영식;황동환;이상조
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.487-496
    • /
    • 1994
  • Recently, the application of viscoelastic material in the field of vibration isolation has gradually increased due to its achievement in structural damping capacity, and many of the theoretical and experimental study has been carried out. In this study, the dynamic characteristics of the visoelastically supported cantilever beam, of which govering equation is based on the Bernoulli- Euler equation, is analyzed theoretically and experimentally. Expression for stiffness of multi-layered viscoelastic materal has been developed using variables such as frequency and number of layers, and further, based on this expression, damping characteristic of the beam is investigated with experimental verification.

  • PDF

Vibration behavior of bi-dimensional functionally graded beams

  • Selmi, Abdellatif
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.587-599
    • /
    • 2021
  • Based on Euler-Bernoulli beam theory and continuous element method, the free vibration of bi-dimensional functionally graded beams is investigated. It is assumed that the material properties vary exponentially along the beam thickness and length. The characteristic frequency equations of beams with different boundary conditions are obtained by transfer matrix method. The validity of the proposed method is assessed through comparison with available results. Parametric studies are carried out to analyze the influences of the gradient indexes and the beam slenderness ratio on the natural frequencies of bi-dimensional functionally graded beams.

Influence of Guide Vane Setting in Pump Mode on Performance Characteristics of a Pump-Turbine

  • Li, Deyou;Wang, Hongjie;Nielsen, Torbjorn K.;Gong, Ruzhi;Wei, Xianzhu;Qin, Daqing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.154-163
    • /
    • 2017
  • Performance characteristics in pump mode of pump-turbines are vital for the safe and effective operation of pumped storage power plants. However, the head characteristics are different under different guide vane openings. In this paper, 3-D steady simulations were performed under 13mm, 19mm and 25mm guide vane openings. Three groups of operating points under the three GVOs were chosen based on experimental validation to investigate the influence of guide vane setting on flow patterns upstream and downstream. The results reveal that, the guide vane setting will obviously change the flow pattern downstream, which in turn influences the flow upstream. It shows a strong effect on hydraulic loss (power dissipation) in the guide and stay vanes. It is also found that the hydraulic loss mainly comes from the flow separation and vortices. In addition, in some operating conditions, the change of guide vane opening will change the flow angle at the runner inlet and outlet, which will change the Euler momentum (power input). The joint action of Euler momentum and hydraulic loss results in the change of the head characteristics.

Design of a morphing flap in a two component airfoil with a droop nose

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.81-91
    • /
    • 2017
  • The performances of lifting surfaces are particularly critical in specific flight conditions like takeoff and landing. Different systems can be used to increase the lift and drag coefficients in such conditions like slat, flap or ailerons. Nevertheless they increase the losses and make difficult the mechanical design of wing structures. Morphing surfaces are a compromise between a right increase in lift and a reduction of parts movements involved in the actuation. Furthermore these systems are suitable for more than one flight condition with low inertia problems. So, flap and slats can be easily substituted by the corresponding morphing shapes. This paper deals with a genetic optimization of an airfoil with morphing flap with an already optimized nose. Indeed, two different codes are used to solve the equations, a finite volume code suitable for structured grids named ZEN and the EulerBoundary Layer Drela's code MSES. First a number of different preliminary design tests were done considering a specific set of design variables in order to restrict the design region. Then a RANS optimization with a single design point related to the take-off flight condition has been carried out in order to refine the previous design. Results are shown using the characteristic curves of the best and of the baseline reported to outline the computed performances enhancements. They reveal how the contemporary use of a morphing acting on the nose of the main component and the trailing edge of the flap drive towards a total not negligible increment in lift.

Comparison of Newton's and Euler's Algorithm in a Compound Pendulum (복합진자 모형의 뉴튼.오일러 알고리즘 비교)

  • Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Primary type of swinging motion in human movement is that which is characteristic of a pendulum. The two types of pendulums are identified as simple and compound. A simple pendulum consist of a small body suspended by a relatively long cord. Its total mass is contained within the bob. The cord is not considered to have mass. A compound pendulum, on the other hand, is any pendulum such as the human body swinging by hands from a horizontal bar. Therefore a compound pendulum depicts important motions that are harmonic, periodic, and oscillatory. In this paper one discusses and compares two algorithms of Newton's method(F = m a) and Euler's method (M = $I{\times}{\alpha}$) in compound pendulum. Through exercise model such as human body with weight(m = 50 kg), body length(L = 1.5m), and center of gravity ($L_c$ = 0.4119L) from proximal end swinging by hands from a horizontal bar, one finds kinematic variables(angle displacement / velocity / acceleration), and simulates kinematic variables by changing body lengths and body mass. BSP by Clauser et al.(1969) & Chandler et al.(1975) is used to find moment of inertia of the compound pendulum. The radius of gyration about center of gravity (CoG) is $k_c\;=\;K_c{\times}L$ (단, k= radius of gyration, K= radius of gyration /segment length), and then moment of inertia about center of gravity(CoG) becomes $I_c\;=\;m\;k_c^2$. Finally, moment of inertia about Z-axis by parallel theorem becomes $I_o\;=\;I_c\;+\;m\;k^2$. The two-order ordinary differential equations of models are solved by ND function of numeric analysis method in Mathematica5.1. The results are as follows; First, The complexity of Newton's method is much more complex than that of Euler's method Second, one could be find kinematic variables according to changing body lengths(L = 1.3 / 1.7 m) and periods are increased by body length increment(L = 1.3 / 1.5 / 1.7 m). Third, one could be find that periods are not changing by means of changing mass(m = 50 / 55 / 60 kg). Conclusively, one is intended to meditate the possibility of applying a compound pendulum to sports(balling, golf, gymnastics and so on) necessary swinging motions. Further improvements to the study could be to apply Euler's method to real motions and one would be able to develop the simulator.