• Title/Summary/Keyword: EuF_3)$

Search Result 153, Processing Time 0.03 seconds

Improving Efficiencies of DSC by Down-conversion of LiGdF4:Eu (Eu이 도핑된 LiGdF4의 Down-conversion을 이용한 염료감응형 태양전지의 효율 향상)

  • 김현주;송재성;김상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.323-328
    • /
    • 2004
  • Down-conversion of Eu$^{3+}$ doped LiGdF$_4$ (LGF) for increasing the cell efficiency on dye-sensitized Ti $O_2$ solar cells has been studied. The dye sensitized solar cell (DSC) consisting of mesoporous Ti $O_2$ electrode deposited on transparent substrate, an electrolyte containing I$^{[-10]}$ /I$_3$$^{[-10]}$ redox couple, and Pt counter electrode is a promising alternative to the inorganic solar cell. The structure of DSC is basically a sandwich type, viz., FTO glass/Ru-red dye-absorbed Ti $O_2$/iodine electrolyte/sputtered Pt/FTO glass. The cell without down converter had open circuit potential of approximately 0.66 Volt, the short circuit photocurrent density of 1.632 mA/$\textrm{cm}^2$, and fill factor of about 50 % at the excitation wavelength of 550 nm. In addition, 5.6 mW/$\textrm{cm}^2$ incident light intensity beam was used as a light source. From this result, the calculated monochromatic efficiency at the wavelength of 550 nm of this cell was about 9.62 %. The incident photon to current conversion efficiency (IPCE) of N3 used as a dye in this work is about 80 % at around 590 nm and 610 nm, which is the emission spectrum of Eu$^{3+}$ doped LGF, results in efficiency increasing of DSC.C.

Organic-Inorganic nani-Composite of PMMA-Forsterite Doped with $Eu^{+3}$

  • Park, Dong Gon;Gang, Jin;Gwon, Hae Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.604-610
    • /
    • 2000
  • Drying-step in sol-gel processing was bypassed by exchanging alcoholic solvent in forsterite alcogel directly with MMA. By in-situ polymerization of the MMA, organic-inorganic nano-composite of PMMA-forsterite was prepared. As porous nature of inorganic networks in the gel was preserved and fixated in the composite, spherical morphology of PMMA was resulted. The PMMA-forsterite composite was optically transparent, machinable,mechanically sustainable, and thermally more stable than pristine PMMA. When doped with $Eu^{+3}$, inorganic moiety in the composite provided site environment that is very different from that in pristine PMMA. Prominent $^{5}D_0$$^{7}F_0$ transition at 578 nm, broken degeneracy in $^{5}D_0$$^{7}F_1$ and $^{5}D_0$$^{7}F_2$ transitions suggested that $Eu^{+3}$ was exclusively doped in the inorganic moiety of the composite, which had lower symmetry than the organic counterpart.

Photoluminescence Imaging of SiO2@ Y2O3:Eu(III) and SiO2@ Y2O3:Tb(III) Core-Shell Nanostructures

  • Cho, Insu;Kang, Jun-Gill;Sohn, Youngku
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.575-580
    • /
    • 2014
  • We uniformly coated Eu(III)- and Tb(III)-doped yttrium oxide onto the surface of $SiO_2$ spheres and then characterized them by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction crystallography and UV-Visible absorption. 2D and 3D photoluminescence image map profiles were reported for the core-shell type structure. Red emission peaks of Eu(III) were observed between 580 to 730 nm and assigned to $^5D_0{\rightarrow}^7F_J$ (J = 0 - 4) transitions. The green emission peaks of Tb(III) between 450 and 650 nm were attributed to the $^5D_4{\rightarrow}^7F_J$ (J = 6, 5, 4, 3) transitions. For annealed samples, Eu(III) ions were embedded at a $C_2$ symmetry site in $Y_2O_3$, which was accompanied by an increase in luminescence intensity and redness, while Tb(III) was changed to Tb(IV), which resulted in no green emission.

Thermal Phenomenon of $BaMgAl_{10}O_{17}$:$Eu^{2+}$ Blue Phosphor by XANES and Rietveld Method

  • Kim, Kwang-Bok;Koo, Kyung-Wan;Chun, Hui-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.210-213
    • /
    • 2002
  • The blue phosphor, $BaMgAl_{10}O_{17}$:$Eu^{2+}$, showing a blue emission band at about 450 nm were prepared by solid state reaction of BaC $O_3$, A $l_2$ $O_3$, MgO and E $u_2$ $O_3$ with Al $F_3$ as a flux. The thermal quenching of BaMgAl $O_{17}$:E $u^{2+}$ phosphor significantly reduces the intensity of the blue emission. It is reduced by an amount of 50% after heating at around 800$^{\circ}C$ for 1 hr. The red emission in the 580∼720 nm region of $^{5}$ $D_{0}$\longrightarro $w^{7}$ $F_1$ and $^{5}$ $D_{0}$\longrightarro $w^{7}$ $F_2$ transition of $Eu^{3+}$ is produced from the phosphor heated above 1,100$^{\circ}C$. The EPR spectrum also reveals that some part of E $u^{2+}$ ions are oxidized to trivalent ions above 1,100$^{\circ}C$ at around 90 and 140mT. This oxidation evidence is also detected from XANES absorption spectra for $L_{III}$ shell of Eu ions: an absorption peak is at 6,977eV of E $u^{2+}$ and 6,984eV of $Eu^{3+}$. The combined X-ray and neutron data suggests that the new phase of EuMgA $l_{11}$ $O_{19}$ magnetoplumbite structure may be formed by heat treatment.eat treatment.tment.eat treatment.tment.t.

  • PDF

Synthesis and characterization of Y2O3 : Eu3+ red nano phosphor powders using RF thermal plasma (RF 열플라즈마를 이용한 Y2O3:Eu3+ 적색 나노 형광체 분말 합성)

  • Lee, Seung-Yong;Koo, Sang-Man;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.272-279
    • /
    • 2015
  • $Y_2O_3:Eu^{3+}$ is an excellent red-emitting phosphor, which has been widely used for display devices due to highly luminescent property and chemical stability. In this study, $Y_2O_3:Eu^{3+}$ red phosphors were prepared using the solid state reaction and RF thermal plasma synthesis. The particle size of $Y_2O_3:Eu^{3+}$ phosphors obtained by the solid state reaction varied from 10 to $20{\mu}m$, and 30~100 nanometer sized $Y_2O_3:Eu^{3+}$ particles were obtained from a liquid form of raw material through RF thermal plasma synthesis without an additional heat treatment. Photoluminescence measurements of the obtained $Y_2O_3:Eu^{3+}$ particles showed a red emission peak at 611 nm ($^5D_0{\rightarrow}^7F_2$). PL intensity of red nano phosphors prepared by RF thermal plasma synthesis was comparable to that of red phosphors prepared by the solid state reaction, indicating that nano-sized $Y_2O_3:Eu^{3+}$ red phosphors could be successfully synthesized using one-step process of RF thermal plasma.

Influence of Fluxing Agents in Sr3SiO5:Eu2+ Phosphors for Fabrication of Warm White Light Emitting Diodes (따뜻한 백색 LED의 제조를 위한 Sr3SiO5:Eu2+ 형광체에서의 융제 첨가 영향)

  • Kim, Hyun-Ho;Chung, Kang-Sup;Lee, Seoung-Won;Kim, Byoung-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.105-110
    • /
    • 2012
  • In this paper, a yellow phosphor $Sr_3SiO_5:Eu^{2+}$ that emits efficiently at the 450 nm excitation for warm white LED is studied. In addition, the effects of various flux $BaF_2$, $NH_4Cl$ on the emission spectra were investigated. The samples were synthesized through conventional solid state reaction under reducing atmosphere of 95% $N_2$-5% $H_2$ mixture at the high temperature. All phosphors showed a excitation band from 450 nm and broad band emission peaking at region of 580 nm. The optimal concentration of $BaF_2$ flux is 3 wt% for $Sr_3SiO_5$ with doping 0.05mol Eu phosphors fired in a reductive atmosphere. The phosphor showed highest emission peaking at 582 nm.

Photoluminescence of Li-doped Y2O3:Eu3+ thin film phosphors grown by pulsed laser deposition

  • Yi, Soung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.371-377
    • /
    • 2002
  • $Y_2O_3:Eu^{3+}$ and Li-doped $Y_2O_3:Eu^{3+}$ thin films have been grown on sapphire substrates using a pulsed laser deposition technique. The thin film phosphors were deposited at a substrate temperature of $600^{\circ}C$ under the oxygen pressure of 100, 200 and 300 mTorr. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. The crystallinity and photoluminescence (PL) of the films are highly dependent on the oxygen pressure. The PL brightness data obtained from $Y_2O_3:Eu^{3+}$ films grown under optimized conditions have indicated that sapphire is one of the most promising substrate for the growth of high quality $Y_2O_3:Eu^{3+}$ thin film red phosphor. In particular, the incorporation of $Li^{+}$ ions into $Y_2O_3$ lattice could induce a remarkable increase of PL. The highest emission intensity was observed with LiF-doped $Y_{1.84}Li_{0.08}Eu_{0.08}O_3(Y_2O_3LiEu)$, whose brightness was increased by a factor of 2.7 in comparison with that of $Y_2O_3:Eu^{3+}$ films. This phosphor may promise for application to the flat panel displays.

Luminescence and Concentration Quenching Properties of BaZrO3:Eu3+ Red-Emitting Phosphors (BaZrO3:Eu3+ 적색 형광체의 발광과 농도 소광 특성)

  • Nguyen Thi Kim Ngan;Shinho Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.274-279
    • /
    • 2024
  • Eu3+-doped BaZrO3 (BaZrO3:Eu3+) phosphor powders were prepared using a solid-state reaction by changing the molar concentration of Eu3+ within the range of 0.5 to 30 mol%. Irrespective of the molar concentration of Eu3+ ions, the crystal structures of all the phosphors were cubic. The excitation spectra of BaZrO3:Eu3+ phosphors consisted of an intense broad band centered at 277 nm in the range of 230~320 nm. The emission spectra were composed of a dominant orange band at 595 nm arising from the 5D07F1 magnetic dipole transition of Eu3+ and two weak emission bands centered at 574 and 615 nm, respectively. As the concentration of Eu3+ increased from 0.5 to 10 mol%, the intensities of all the emission bands gradually increased, approached maxima at 10 mol% of Eu3+ ions, and then showed a decreasing tendency with further increase in the Eu3+ ions due to the concentration quenching. The critical distance between neighboring Eu3+ ions for concentration quenching was calculated to be 11.21 Å, indicating that dipole-dipole interaction was the main mechanism of concentration quenching of BaZrO3:Eu3+ phosphors. The results suggest that the orange emission intensity can be modulated by doping the appropriate concentration of Eu3+ ions.

Luminescent Properties of Rare Earth doped $SrTiO_3:Pr$ Phosphors (희토류를 첨가한 $SrTiO_3:Pr$형광체의 발광특성)

  • Park, Chang-Sub;Lee, Jeng-Un;Lee, Ji-Young;Yu, Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.483-484
    • /
    • 2006
  • $Eu^{3+}$$Pr^{3+}$이 첨가된 $SrTiO_3$형광체를 고상반응법으로 제조하였다. $SrTiO_3:Pr$형광체는 $^3P_J(J=0,1,2){\rightarrow}^3H_4$에 의한 490nm 부근의 녹색발광과 $^1D_2{\rightarrow}^3H_4$에 의한 618nm 의 적색발광이 동시에 나타났다. $SrTiO_3:Eu$형광체는 $SrTiO_3:Pr$형광체와 달리 $^5D_0{\rightarrow}^7F_1$에 의한 583nm와 $^5D_0{\rightarrow}^7F_2$에 의한 610nm의 적색발광만 각각 관찰되었다. $SrTiO_3$의 모체에서 $Eu^{3+}$는 inversion sysmmetry를 가짐으로써 610nm의 electric dipole transition 보다는 583nm의 magnetic dipole transition이 강하게 일어났다.

  • PDF

Photoluminescence Properties of $Eu^{3+}-Activated\;YCa_3(GaO)_3(BO_3)_4$ phosphor

  • Lee, Dae-Won;Kwak, Chung-Heop;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1360-1363
    • /
    • 2006
  • A borate compound was adopted as new host material for $EU^{3+}$ activator. The $Eu^{3+}-doped\;YCa_3(GaO)_3(BO_3)_4$ (YCGB) phosphors were successfully synthesized. Also, their photoluminescence properties under the excitation of UV ray were measured. In the XRD patterns of the synthesized powders, most peaks were well-matched to a gaudefroyite phase. The emission of $Eu^{3+}$ in YCGB consists of a strong peak centered at 622 nm, which is attributed to $^5D_O-^7F_2$ transition of $Eu^{3+}$ and several weak peaks at near the wavelength. Optimum $Eu^{3+}$ concentration of the red phosphor under the excitation with the wavelength of 395 nm was about 75 mol%. This indicates that the red phosphor has a relatively higher critical concentration than that of the other $Eu^{3+}-doped$ phosphors. The dominant interaction character of $Eu^{3+}$ might be dipole-dipole interaction.

  • PDF