• Title/Summary/Keyword: Ethanol fermentation

Search Result 908, Processing Time 0.028 seconds

High-Solid Enzymatic Hydrolysis and Fermentation of Solka Floc into Ethanol

  • Um, Byung-Hwan;Hanley, Thomas R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1257-1265
    • /
    • 2008
  • To lower the cost of ethanol distillation of fermentation broths, a high initial glucose concentration is desired. However, an increase in the substrate concentration typically reduces the ethanol yield because of insufficient mass and heat transfer. In addition, different operating temperatures are required to optimize the enzymatic hydrolysis (50$^{\circ}C$) and fermentation (30$^{\circ}C$). Thus, to overcome these incompatible temperatures, saccharification followed by fermentation (SFF) was employed with relatively high solid concentrations (10% to 20%) using a portion loading method. In this study, glucose and ethanol were produced from Solka Floc, which was first digested by enzymes at 50$^{\circ}C$ for 48 h, followed by fermentation. In this process, commercial enzymes were used in combination with a recombinant strain of Zymomonas mobilis (39679:pZB4L). The effects of the substrate concentration (10% to 20%, w/v) and reactor configuration were also investigated. In the first step, the enzyme reaction was achieved using 20 FPU/g cellulose at 50$^{\circ}C$ for 96 h. The fermentation was then performed at 30$^{\circ}C$ for 96 h. The enzymatic digestibility was 50.7%, 38.4%, and 29.4% after 96 h with a baffled Rushton impeller and initial solid concentration of 10%, 15%, and 20% (w/v), respectively, which was significantly higher than that obtained with a baffled marine impeller. The highest ethanol yield of 83.6%, 73.4%, and 21.8%, based on the theoretical amount of glucose, was obtained with a substrate concentration of 10%, 15%, and 20%, respectively, which also corresponded to 80.5%, 68.6%, and 19.1%, based on the theoretical amount of the cell biomass and soluble glucose present after 48 h of SFF.

Optimization of Cell Concentration and Dilution Rate in Cell Recycled Ethanol Fermentation (세포재순환 에탄올 발효에서 세포농도와 희석률의 최적화)

  • 이재우;유영제
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.258-264
    • /
    • 1992
  • The rheological characteristics of the ethanol fermentation broth were pseudoplastic when the yeast concentration was above 150g/L. From the viewpoint of rheological properties, the cell concentration below 150g/L was recommended for ethanol fermentation. Since the cell floc was formed at the cell concentration of 100 g/L, yeast cells were not much plugged in the pores of the membrane. The cell concentration above 100g/L was desirable when considering the permeability of the membrane. Since ethanol productivity was the highest when the cell concentration was 130 g/L in cell recycled ethanol fermentation. The optimal dilution rate was determined at 1.3 h-1 at constant cell mass of 130g/L. At this dilution rate, the ethanol productivity and glucose conversion ratio ware 80 g/L$\cdot$h and 0.94, respectively.

  • PDF

Chemical Characteristics and Ethanol Fermentation of the Cellulose Component in Autohydrolyzed Bagasse

  • Asada Chikako;Nakamura Yoshitoshi;Kobayashi Fumihisa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.346-352
    • /
    • 2005
  • The chemical characteristics, enzymatic saccharification, and ethanol fermentation of autohydrolyzed lignocellulosic material that was exposed to steam explosion were investigated using bagasse as the sample. The effects of the steam explosion on the change in pH, organic acids production, degrees of polymerization and crystallinity of the cellulose component, and the amount of extractive components in the autohydrolyzated bagasse were examined. The steam explosion decreased the degree of polymerzation up to about 700 but increased the degree of crystallinity and the micelle width of the cellulose component in the bagasse. The steam explosion, at a pressure of 2.55 MPa for 3 mins, was the most effective for the delignification of bagasse. 40 g/L of glucose and 20 g/L of xylose were produced from 100 g/L of the autohydrolyzed bagasse by the enzymatic saccharification using mixed cellulases, acucelase and meicelase. The maximum ethanol concentration, 20 g/L, was obtained from the enzymatic hydrolyzate of 100 g/L of the autohydrolyzed bagasse by the ethanol fermentation using Pichia stipitis CBS 5773; the ethanol yield from sugars was 0.33 g/g sugars.

Effect of Initial condition on the Characteristics of Ehtanol Fermentation (발효 초기조건이 에탄올 발효 특성치에 미치는 영향)

  • 민경호;김휘동;허병기
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.479-484
    • /
    • 1995
  • The effect of initial cell concentration on the characteristics of ethanol fermentation was investigated in the batch fermentation of Saccharomyces cerevisiae ATCC 24858. The characteristics were investigated in the range of 60 to 230 g/l of the initial sugar concentrations and 0.5 to 85 g/l of the initial cell concentrations. When the initial cell concentrations were 27 g/l for 60 g/l of the initial sugar and 85 g/l for 230 g/l, the fermentation time required for the complete consumption of the initial sugar was one hour, respectively. The ethanol productivity increased with the initial cell concentration so that, in the case of 100 g/l of initial sugar, the productivity rose up to 55 g/l/hr at 55 g/l of the initial cell concentration. The specific growth rate decreased according to the increase in the initial biomass concentration and finally became zero at around 25 g/l of the cell concentration regardless of the initial sugar concentration. The specific ethanol production rate was constant as 1.02 g/l/hr up to 150 g/l of the initial sugar. However, the rates decreased sharply with the augmentation of concentration of the initial sugar above 160 g/l. The overall ethanol yield represented a constant value, 0.475 g/g irrespective of the initial cell and sugar concentrations. The overall biomass yietd showed a trend to diminish in values with the biomass and ultimately to reach zero more than 25 g/l of the initial cell concentration.

  • PDF

Studies on the Immobilization of Saccharomyces cerevisiae for Ethanol Production (효모의 Alginate 고정화에 관한 연구)

  • 한면수;하상도;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.390-397
    • /
    • 1991
  • Ethanol production by calcium alginate-immobilized baker's yeast (Saccharor/tyces cereviszae) was studied in the batch fermentation using glucose medium as a feed. Immobilied cells were stable between $30^{\circ}C$ and $40^{\circ}C$ whereas free cells were stable between $30^{\circ}C$ and $37^{\circ}C$ The beads were showed constant ethanol productivity during 720 hours (30 days) over. Fermentation characteristics of immobilized baker's yeast were examined changing the initial glucose concentration of broth in fermentation. Initial glucose concentrations employed were 50, 100, 150 and 200 g/l, respectively. In 15% gucose medium, maximum specific growth rate, maximum ethanol yield and ethanol concentration were observed as 0.092 $h^{-1}$, 0.45, 67.5 g/l, respectively.

  • PDF

Comparative Study on Ethanol Production with Pentose and/or Hexose by Saccharomyces cerevisiae and/or Pichia stipitis (Saccharomyces cerevisiae와 Pichia stipitis를 이용한 오탄당과 육탄당으로부터 에탄올 생산에 관한 비교연구)

  • Kim, Jung-Gon;Ahn, Jung-Hoon
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • Glucose and xylose are the most abundant materials in nature which can be used to produce ethanol by yeast fermentation. Three combinations of cultivation with glucose and xylose were carried out; separated, co-culture, and sequential fermentation with Saccharomyces cerevisiae and Pichia stipitis. In the separated fermentation, S. cerevisiae fermented glucose to produce 14.5 g/l ethanol from 29.4 g/l glucose but hardly used xylose. However, P. stipitis utilized not only glucose but also xylose to produce ethanol 11.9 g/l and 11.6 g/l from 29.4 g/l glucose and 29.0 g/l xylose, respectively. In the mixture of glucose and xylose, P. stipitis fermented both sugars, producing 21.1 g/l ethanol while S. cerevisiae fermented only glucose, producing 13.4 g/l ethanol. In the co-culture and sequential fermentation, the co-culture showed more efficient ethanol productivity with 18.6 g/l ethanol than the sequential fermentation with 12.4 g/l ethanol. To investigate the effect of nutrients in the growth of microorganisms and ethanol production, yeast nitrogen base (YNB) was used in the sequential fermentation with S. cerevisiae and P. stipitis. YNB supplemented some nutrients which S. cerevisiae used up in the broth and the culture showed increased growth rate, increased consumption of xylose, and increased ethanol productivity producing 22.5 g/l ethanol from 54.6 g/l sugar with a yield of 0.41 g/g.

Modeling and Characteristics of Ethanol Fermentation Process Combined with Pervaporation (투과증발과 결합된 에탄올 발효 공정의 모델링 및 특성)

  • 최은수;김진현;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.451-458
    • /
    • 1992
  • Pervaporation which is capable of removing ethanol selectively was adopted to reduce the ethanol inhibition and in situ recovery of ethanol in ethanol fermentation, The composite membrane made of silicone and polysulfone was used to separate the ethanol selectively. The ethanol selectivity of the membrane was about 4 and the total flux was 300 g/m2 h at 301:: and 10 mmHg for 25 g/l of feed concentration. Saccharomyces cerevisiae entrapped within Ca-alginate gels was employed for ethanol fermentations in a fluidized-bed bioreactor. The pervaporation membrane unit and fluidized-bed bioreactor were combined into one system. The proposed model equations for the combined system showed good accordances with the experimental results. It was found from the simulation results that the ethanol concentration in the broth for the combined system was lower than that for the continuous fermentation system without a membrane unit. Ethanol productivity can be thus increased by employing the combined system.

  • PDF

Killer 효모 Saccharomyces cerevisiae B15-1의 에탄올 발효특성

  • Rhee, Chang-Ho;Woo, Cheol-Joo;Lee, Jong-Soo;Chung, Ki-Taek;Park, Heui-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.331-335
    • /
    • 1996
  • Characteristics of ethanol fermentation were investigated during the stationary culture of a killer yeast, Saccharomyces cerevisiae B15-1. Specific ethanol production rate reached the maximum level, 1.203 g-EtOH/g-cell-hr, at 150 g/l of the initial glucose concentration. No big differences were obtained in ethanol fermentability based on the initial sugar concentration below 150 g/l. When 200 g/l of sugar was used, fermentability dropped significantly. Although the final cell mass and the amount of ethanol produced were increased, their increase rates were declined according to the increase of initial sugar concentration. It was found that most of the sugar used below 150 g/l of concentration could be changed to ethanol. However, when 200 g/l of sugar was used, some of them remained in the media even after increase of cell mass and fermentation stopped. The ethanol yield was decreased when initial sugar concentration was high, and were increased when the amount of ethanol produced was increased and finally reached the plateau over 60 g/l of ethanol concentration.

  • PDF

Isolation of Ethanol-tolerant Strains of Yeast in Relation to Their Tolerant Mechanism (에탄올 내성 효모의 선별과 그의 에탄올 내성 기작)

  • 지계숙;박소영;이지나;이영하;민경희
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.136-142
    • /
    • 1991
  • The selection of ethanol-tolerant strains was applied to enrichment culture of YPD broth medium containing various concentrations of ethanol. Isolates were identified to be Saccharomyces cerevisiae, the others as S. dairensis, S. exiguus, S. telluris, Saccharomycodes ludwigii, Schwanniomyces occidentalis var. occidentalis and Zygosaccharomyces florentinus. Among isolates S. cerevisiae YO-1 was screened as having the highest ethanol tolerance and produced 18% (v/v) ethanol after 4 days fermentation. The change of fatty-acyl residues represents that a progressive decrease in fatty-acyl unsaturation and a proportional increase in saturation in phospholipids of yeast cells during fermentation affected the yeast viability. Supplementation ethanol to the cultures led to an increase of unsaturated fatty-acyl residues, especially $C_{16}$ or $C_{18}$ residues, along with a decrease in the proportion of saturated residues in cellular phospholipids. Increasing the amount of soy flour led to an increase in the maximum number of viable yeast cells and ethanol production. It was possible in 4 days to reach 21% (v/v) ethanol by adding 4% soy flour as source of unsaturated fatty-acyl residues to the fermentation medium. Soy flour not only increased yeast population but also enhanced the physiological properties of yeast cells to be ethanol tolerant in the anaerobic culture.

  • PDF

Direct Fermentation of D-Xylose to Ethanol by Candida sp. BT001

  • LEE, SANG-HYEOB;WON-GI BANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.56-62
    • /
    • 1994
  • A yeast strain, BT001, which can directly ferment D-xylose to ethanol was isolated from forest soils, and then identified as Candida sp. Cultural conditions for the optimum ethanol production, along with the effects of aeration on cell growth and ethanol production were investigated. Aeration stimulated the cell growth and the volumetric rate of ethanol production, but decreased the ethanol yield. Optimum temperature and initial pH for the ethanol production were $33{\circ}^C$ and 6.0, respectively. In a shake flask culture, this strain produced 52.3 g ethanol per liter from 12%(w/v) D-xylose after incubation for 96 hours. Ethanol yield was 0.436 g per g D-xylose consumed. This corresponds to 85.8% of theoretical yield. Also, this yeast strain produced ethanol from D-galactose, D-glucose and D-mannose, but not from L-arabinose and L-rhamnose. Among these sugars, D-glucose was the fastest in being converted to ethanol sugars.

  • PDF