• Title/Summary/Keyword: Estuarine Wetland

Search Result 33, Processing Time 0.017 seconds

Effects of Global Warming on the Estuarine Wetland Biogeochemistry (기후변화가 하구 습지 토양의 생지화학적 반응에 미치는 영향에 관한 연구)

  • Ki, Bo-Min;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.553-563
    • /
    • 2011
  • This study investigated the effects of elevated $CO_2$ and nitrogen addition on the anaerobic decomposition mediated by microorganisms to determine the microbial metabolic pathways in the degradation of organic matters of the sediments. There were statistically significant differences(P < 0.05) in the rates between denitrification and methanogenesis upon increased $CO_2$ concentration, nitrogen addition, in the presence of plants. Based on the assumption that anaerobic degradation of organic matter mainly occurs through denitrification, iron reduction, and methanogenesis, methanogenesis is the dominant pathways in the decomposition of organic matter under the condition of elevated $CO_2$ and nitrogen addition. In addition, the altered environment increased anaerobic carbon decomposition. Therefore, it can be concluded that freshwater wetland sediments have positive effects on the global warming by the increased methanogenesiss as well as increased anaerobic carbon decomposition.

Intraspecific diet shifts of the sesarmid crab, Sesarma dehaani, in three wetlands in the Han River estuary, South Korea

  • Yang, Dongwoo;Han, Donguk;Park, Sangkyu
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • Background: Han River estuary is a national wetland reserve near the Demilitarized Zone (DMZ) between South Korea and North Korea. This trans-boundary estuary area has been well preserved and shows distinctive plant communities along the salinity gradient. To elucidate energy flows and nutrient cycling in this area, we studied trophic relations between the dominant sesarmid crab, Sesarma dehaani, and food sources in three wetlands with different environments along the estuarine gradients. Results: Stable isotope signatures (${\delta}^{13}C$ and ${\delta}^{15}N$) of the crabs were significantly different among the sites and body size classes. Seasonal changes in ${\delta}^{13}C$ of small crabs were distinct from those of large individuals at all the sites. The isotopic values and fatty acid profiles of the crabs were more different among the sites in September than in May. In May, large-sized crabs utilized more plant materials compared to other dietary sources in contrast to small-sized crabs as revealed by a stable isotope mixing modeling, whereas contributions to diets of crabs were not dominated by a specific diet for different body size in September except at site 1. Based on PCA loadings, fatty acid content of $18:3{\omega}3$, known as a biomarker of plant materials, was the main factor to separate size groups of crabs in May and September. The ${\delta}^{13}C$ value of sediment had high correlation with those of small-sized crabs at site 1 and 2 when 1-month time lag was applied to the value for crabs during the surveyed period. Conclusions: Based on the stable isotope and fatty acid results, the consumption habits of S. dehaani appear to be distinguished by sites and their size. In particular, smaller size of S. dehaani appears to be more dependent on fewer food sources and is influenced more by the diet sources from the sediments in Han River estuary.

Predicting the Potential Habitat and Future Distribution of Brachydiplax chalybea flavovittata Ris, 1911 (Odonata: Libellulidae) (기후변화에 따른 남색이마잠자리 잠재적 서식지 및 미래 분포예측)

  • Soon Jik Kwon;Yung Chul Jun;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.335-344
    • /
    • 2023
  • Brachydiplax chalybea flavovittata, a climate-sensitive biological indicator species, was first observed and recorded at Jeju Island in Korea in 2010. Overwintering was recently confirmed in the Yeongsan River area. This study was aimed to predict the potential distribution patterns for the larvae of B. chalybea flavovittata and to understand its ecological characteristics as well as changes of population under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from May 2019 to May 2023. We used for the distribution model among downloaded 19 variables from the WorldClim database. MaxEnt model was adopted for the prediction of potential and future distribution for B. chalybea flavovittata. Larval distribution ranged within a region delimited by northern latitude from Jeju-si, Jeju Special Self-Governing Province (33.318096°) to Yeoju-si, Gyeonggi-do (37.366734°) and eastern longitude from Jindo-gun, Jeollanam-do (126.054925°) to Yangsan-si, Gyeongsangnam-do (129.016472°). M type (permanent rivers, streams and creeks) wetlands were the most common habitat based on the Ramsar's wetland classification system, followed by Tp type (permanent freshwater marshes and pools) (45.8%) and F type (estuarine waters) (4.2%). MaxEnt model presented that potential distribution with high inhabiting probability included Ulsan and Daegu Metropolitan City in addition to the currently discovered habitats. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), it was predicted that the possible distribution area would expand in the 2050s and 2090s, covering the southern and western coastal regions, the southern Daegu metropolitan area and the eastern coastal regions in the near future. This study suggests that B. chalybea flavovittata can be used as an effective indicator species for climate changes with a monitoring of their distribution ranges. Our findings will also help to provide basic information on the conservation and management of co-existing native species.