• Title/Summary/Keyword: Estrus Synchronization (ES)

Search Result 2, Processing Time 0.017 seconds

Effects of Vitamin ADE or Mineral Supplement on Conception Rates of Estrus Synchronized Holstein Heifers (발정동기화 처리한 홀스타인 처녀소의 수태율 향상을 위한 비타민 ADE 또는 미네랄의 투여 효과)

  • Lee, Seung-Jin;Shin, Sang Tae
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.255-260
    • /
    • 2016
  • The aim of this study is to evaluate the effects of vitamin or mineral supplements on the conception rates of dairy heifers when replacing the last injection of GnRH with hCG in ovsynch protocol (experiment 1) and also to investigate whether the estrus synchronization treatment in the heifer stage affects the conception rates after $1^{st}$ parturition (experiment 2). In experiment 1, 50 heifers were randomly assigned into 3 groups: 20 heifers each in groups 1 and 2, and 10 in group 3. All three groups were treated with an intramuscular injection of GnRH on day 0 (day 0 = the day of program start), $PGF_{2{\alpha}}$ on day 7 and hCG on day 9, and were inseminated on day 10, 12~16h after hCG injection. In group 1 (vitamin group), the heifers were treated with an intramuscular injection of 5 ml of vitamin-ADE $500^{(R)}$, and group 2 (mineral group) was treated twice with an intramuscular injection of 30 ml of mineral supplement-LAPTOVET$^{(R)}$ on a one-week interval beginning on the day of hormone treatment (day 0 and day 7 respectively). Group 3 (control) was treated only with hormones. Pregnancy diagnosis was performed by ultrasonography through a rectal probe. First service conception rates (FSCR) and average services per conception (ASPC) were recorded for all subjects. Of the total 50 heifers, 6 (2 in group 1, 3 in group 2, and 1 in group 3) heifers were eliminated due to accidents during experiment 1. FSCRs were 58.8% (10/17), 66.7% (12/18) and 44.4% (4/9) in groups 1, 2 and 3, respectively. ASPCs were $1.53{\pm}0.72$, $1.27{\pm}0.59$ and $1.63{\pm}0.74$ in groups 1, 2 and 3, respectively. Although there were no significant difference between the groups, relatively good results (higher FSCR and lower ASPC) were obtained in both group 1 and 2. In experiment 2, 11 primiparous cows from group 2 of experiment 1 in heifer stage which had been treated both with the hormones for estrus synchronizing and mineral supplements (ES group), and 12 primiparous cows treated only with minerals (non-ES group) were compared to examine the effects of estrus synchronization program on conception rates after $1^{st}$ parturition. Following the examination, postpartum ASPCs were $1.55{\pm}0.82$ and $2.17{\pm}1.47$ in ES group and non-ES group, respectively. The postpartum average days open (ADO) were $116{\pm}56$ and $197{\pm}93$ in ES group and non-ES group, respectively. Although there were no significant difference between the two groups, desirable results (lower ASPC and shorter ADO) were found in ES group after $1^{st}$ parturiton. In conclusion, experiment 1 indicates that vitamin or mineral supplement with ovsynch protocol may have some positive effect on FSCR and ASPC of dairy heifers, and in experiment 2, ES program in heifer stage had a positive effect on ASPC and ADO following $1^{st}$ parturition.

Research advances in reproduction for dairy goats

  • Luo, Jun;Wang, Wei;Sun, Shuang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1284-1295
    • /
    • 2019
  • Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future.