• 제목/요약/키워드: Estimation of the Spatial Development

Search Result 187, Processing Time 0.03 seconds

Extraction of Some Transportation Reference Planning Indices using High-Resolution Remotely Sensed Imagery

  • Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.263-271
    • /
    • 2002
  • Recently, spatial information technologies using remotely sensed imagery and functionality of GIS (Geographic Information Systems) have been widely utilized to various types of transportation-related applications. In this study, extraction programs of some practical indices, to be effectively used in transportation reference planning problem, were designed and implemented as prototyped extensions in GIS development environment: traffic flow estimation (TFL/TFB), urban rural index (URI), and accessibility index (AI). In TFL/TFB, user can obtain quantitative results on traffic flow estimation at link/block using high-resolution satellite imagery. Whereas, URI extension provides urban-rural characteristics related to road system, being considered one of important factors in transportation planning. Lastly, AI extension helps to obtain accessibility index between nodes of road segments and surrounding district areas touched or intersected with the road network system, and it also provides useful information for transportation planning problems. This approach is regarded as one of RS-T (Remote Sensing in Transportation), and it is expected to expand as new application of remotely sensed imagery.

Runoff Estimation with Consideration of Land-Use Distribution (토지이용 분포를 고려한 유출량 산정기법)

  • Son, Kwang-Ik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.97-102
    • /
    • 2008
  • The Natural Resource Conservation Service Curve Number(NRCS-CN) method is one of the widely used methods for computation of runoff from a basin. However, NRCS-CN method has a weak point in that the spatial land use distribution characteristics are ignored by using area-weighted CN value. This study developed a runoff estimation algorithm which can reflect the spatial land-use distribution. The algorithm consists of Moglen's theory and a developed flow accumulation estimation program in FORTRAN. Comparisons between the results from area-weighted CN method and this study showed reasonably good agreement with measured data of experimental watersheds. The developed program predicted lower runoff than the conventional NRCS-CN method. As a conclusion, this study proposes a new design direction which can simulate real runoff phenomena. And the developed program could be applied into runoff minimization design for a basin development.

Adaptive CFAR Algorithm using Two-Dimensional Block Estimation (이차원 블록 추정을 이용한 적응 CFAR 알고리즘)

  • Choi Beyung Gwan;Lee Min Joon;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • Adaptive constant false alarm rate(CFAR) algorithm is used for good detection probability as well as constant false alarm rate in clutter background. Especially, filtering technique adaptive to spatial variation is necessary for improving detection quality in non stationary clutter environment which has spatial correlation and large magnitude deviation. In this paper, we propose a two-dimensional block interpolation(TBI) adaptive CFAR algorithm that calculates the node estimate in the fred two dimensional region and subsequently determines the final estimate for each resolution cell by two-dimensional interpolation. The proposed method is efficient for filtering abnormal ejection by adopting distribution median in fixed region and also has advantage of reducing required memory space by using estimation method which gets final values after calculating the block node values. Through simulations, we show that the proposed method is superior to the traditional adaptive CFAR algorithms which are transversal or recursive in aspect of the detection performance and required memory space.

Analysis of Hierarchical Competition Structure and Pricing Strategy in the Hotel Industry

  • BAEK, Unji;SIM, Youngseok;LEE, Seul-Ki
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.4
    • /
    • pp.179-187
    • /
    • 2019
  • This study aims to investigate the effects of market commonality and resource similarity on price competition and the recursive consequences in the Korean lodging market. Price comparison among hotels in the same geographic market has been facilitated through the development of information technology, rendering little search cost of consumers. While the literature implies the heterogeneous price attack and response among hotels, a limited number of empirical researches focus on the asymmetric and recursive pattern in the competitive dynamics. This study empirically examines the price interactions in the Korean lodging market based on the theoretical framework of competitive price interactions and countervailing power. Demonstrating superiority to the spatial lag model and the ordinary least squares in the estimation, the results from spatial error model suggest that the hotels with longer operational history pose an asymmetric impact on the price of the newer hotels. The asymmetry is also found in chain hotels over the independent, further implying the possibility of predatory pricing. The findings of this study provide the evidence of a hierarchical structure in the price competition, with different countervailing power by the resources of the hotels. Theoretical and managerial implications are discussed, with suggestions for future study.

GEO-LINEAMENT CHARACTERIZATION USING WAVELET APPROACH: A CASE STUDY IN THE UISEUNG CALDERA REGION

  • Kim, Mi-Kyung;Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.243-246
    • /
    • 2006
  • Wavelet approach is regarded as a useful methodology for geo-environment analysis with respect to spatial objects with periodicity and spatial pattern, compared to autocorrelation analysis, Fourier analysis, variogram analysis and so on. However, there are a few case studies for geo-lineament characterization with the actual geo-based information such as remotely sensed imagery and DEM. In this study, wavelet approach in the Uiseung caldera region are carried out to delineate characterization for geolineament spatial pattern. There are high possibilities of the development of radial lineaments from the centre of round crater due to the eruption of a volcano and the subsidence of a crater. We have grasped the directionality of the whole linear structures of the caldera via rose diagram, and then performed wavelet analysis on the profiles of orthogonal directions for main directions of the lineaments. The result of this study is likely to be used as a fundamental data in order to grasp the outline of caldera structure prior to the close estimation

  • PDF

Verification of mean volume backscattering strength from acoustic doppler current profiler by using calibrated sphere method (교정구에 의한 음향 도플러유향유속계의 평균 체적후방산란강도 검토)

  • Yang, Yong-Su;Lee, Kyounghoon;Lee, Dae-Jae;Lee, Dong-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.551-555
    • /
    • 2014
  • ADCPs have been widely used to estimate the dynamic characteristics and biomass of sound scattering layers (SSLs), and swimming speed of fish schools for analyzing SSLs spatial distribution and/or various behavior patterns. This result showed that the verification of the mean volume backscattering strength (MVBS or averaged SV, dB) acquired by the ADCP would be necessary for a quantitative analysis on the spatial distribution and the biomass estimation of the SSLs or fish school when ADCP is used for estimating their biomass. In addition, the calibrated sphere method was used to verify values of each MVBS obtained from 4 beams of ADCP (153.6 kHz) on the base of 3 frequencies (38, 120, 200 kHz) of Scientific echo sounder's split beam system. Then, the measured SV values were compared and analyzed in its Target Strength (TS, dB) values estimated by a theoretical acoustic scattering model.

Development of Snowfall Retrieval Algorithm by Combining Measurements from CloudSat, AQUA and NOAA Satellites for the Korean Peninsula

  • Kim, Young-Seup;Kim, Na-Ri;Park, Kyung-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.277-288
    • /
    • 2011
  • Cloudsat satellite data is sensitive to snowfall and collected during each month beginning with Dec 2007 and ending Feb 2008. In this study, we attempt to develop a snowfall retrieval algorithm using a combination of radiometer and cloud radar data. We trained data from the relation between brightness temperature measurements from NOAA's Advanced Microwave Sounder Unit-B(AMSU-B) and the radar reflectivity of the 2B-GEOPROF product from W-band(94 GHz) cloud radar onboard Cloudsat and applied it to the Korea peninsula. We use a principal components analysis to quantify the variations that are the result of the radiometric signatures of snowfall from those of the surface. Finally, we quantify the correlation between the higher principal component (orthogonal to surface variability) of the microwave radiances and the precipitation-sensitive CloudSat radar reflectivities. This work summarizes the results of applying this approach to observations over the East Sea during Feb. 2008. The retrieved data show reasonable estimation for snowfall rate compared with Cloudsat vertical image.

Spatio-temporal dependent errors of radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam;Lee, Dongryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.164-164
    • /
    • 2016
  • Radar rainfall estimates have been widely used in calculating rainfall amount approximately and predicting flood risks. The radar rainfall estimates have a number of error sources such as beam blockage and ground clutter hinder their applications to hydrological flood forecasting. Moreover, it has been reported in paper that those errors are inter-correlated spatially and temporally. Therefore, in the current study, we tested influence about spatio-temporal errors in radar rainfall estimates. Spatio-temporal errors were simulated through a stochastic simulation model, called Multivariate Autoregressive (MAR). For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo. The results indicated that spatio-temporal dependent errors caused much higher variations in peak discharge than spatial dependent errors. To further investigate the effect of the magnitude of time correlation among radar errors, different magnitudes of temporal correlations were employed during the rainfall-runoff simulation. The results indicated that strong correlation caused a higher variation in peak discharge. This concluded that the effects on reducing temporal and spatial correlation must be taken in addition to correcting the biases in radar rainfall estimates. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which was funded by the Korea Institute of Construction Technology.

  • PDF

Estimation of the Available Green Roof Area using Geo-Spatial Data (공간정보를 이용한 옥상녹화 가용면적 추정)

  • Ahn, Ji-Yeon;Jung, Tae-Woong;Koo, Jee-hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.5
    • /
    • pp.11-17
    • /
    • 2016
  • The purposes of this research are to estimate area of greenable roof and to monitor maintaining of green roofs using World-View 2 images. The contents of this research are development of World-View 2 application technologies for estimation of green roof area and development of monitoring and maintaining of green roofs using World-View 2 images. The available green roof areas in Gwangjin-gu Seoul, a case for this study, were estimated using digital maps and World-View 2 images. The available green roof area is approximately 12.17% ($2,153,700m^2$) of the total area, and the roof vegetation accounts for 0.46% ($80,660m^2$) of the total area. For verification of the extracted roof vegetation, Vworld 3D Desktop map service was applied. The study results may be used as a decision-making tool by the government and local governments in determining the feasibility of green roof projects. In addition, the project implementer may periodically monitor to see whether roof greening has maintained for efficient management of projects, and a vast amount of World-View 2 images may be regularly used before and after the projects to contribute to sharing of satellite images information.

Development of Hierarchical Bayesian Spatial Regional Frequency Analysis Model Considering Geographical Characteristics (지형특성을 활용한 계층적 Bayesian Spatial 지역빈도해석)

  • Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.469-482
    • /
    • 2014
  • This study developed a Bayesian spatial regional frequency analysis, which aimed to analyze spatial patterns of design rainfall by incorporating geographical information (e.g. latitude, longitude and altitude) and climate characteristics (e.g. annual maximum series) within a Bayesian framework. There are disadvantages to considering geographical characteristics and to increasing uncertainties associated with areal rainfall estimation on the existing regional frequency analysis. In this sense, this study estimated the parameters of Gumbel distribution which is a function of geographical and climate characteristics, and the estimated parameters were spatially interpolated to derive design rainfall over the entire Han-river watershed. The proposed Bayesian spatial regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis, and even better performance in terms of quantifying uncertainty of design rainfall and considering geographical information as a predictor.