• Title/Summary/Keyword: Estimation of Technology values

Search Result 532, Processing Time 0.023 seconds

Suggestions for Cost Improvement of High concentration Linked Treatment in Municipal Wastewater Treatment Plant (하수처리장에서의 고농도 연계처리수에 대한 요금 개선 제안)

  • Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.92-99
    • /
    • 2020
  • Linked treatment refers to a system that relieves the burden of the business by linking high concentrations of wastewater such as human waste, manure, leachate, and other industrial wastewater to nearby municipal wastewater treatment plants(MWTPs). In 2018, 187 MWTPs, which are about 4.5% of the total domestic MWTPs, have implemented a linked treatment system, but local governments are having difficulties in operating sewage treatment due to lack of reasonable cost estimation standards. Therefore, we proposed an improvement plan to solve the problem in the calculation method that currently imposes linked wastewater. To this end, the effects and correlations of the linkage treatment system on the sewage treatment unit were analyzed, and among them, the main factors with the highest correlation were applied to the improvement plan. As a result, an improvement plan that improved three parts of the existing calculation method was presented, and the calculation method and the calculation case using the existing literature values were also presented. This can be used as a basis for future reference by local governments to implement linkage treatment, and to revise local sewerage ordinance and is believed to be helpful in operating a rational linkage system.

Estimation of Genetic Parameters for Carcass Traits in Hanwoo Steer (거세한우의 도체형질에 대한 유전모수 추정)

  • Yoon, H.B.;Kim, S.D.;Na, S.H.;Chang, U.M.;Lee, H.K.;Jeon, G.J.;Lee, D.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.383-390
    • /
    • 2002
  • The data were consisted of 1,262 records for carcass traits observed at Hanwoo steers from 1998 to 2001 at Namwon and Deakwanryung branch of National Livestock Research Institute, Rural Development Administration. Pedigrees of young bulls were traced back to search for magnifying inbreeding. Genetic parameters for carcass traits with Gibbs sampling in a threshold animal model were compared to estimates with REML algorithm in linear model. As the results, most of bulls were not inbred and sire pedigree group was non-inbred population. However, most of the bulls fell in some relationship with each other. Heritability estimates as fully posterior means by Gibbs samplers in threshold model were higher than those by REML in linear model. Furthermore, these estimates in threshold model using GS showed higher estimates than estimates using tested young bulls in previous study and same model. Heritability estimate by GS for marbling score was 0.74 and genetic correlation estimate between marbling score and body weight at slaughter was –0.44. Further study for correlation of breeding values between REML algorithm in linear model and Gibbs sampling algorithm in threshold model was needed.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

Estimation of Environmental Effect and Genetic Parameter on Reproduction Traits for On-farm Test Records (농장검정돈의 번식형질에 미치는 환경효과 및 유전모수의 추정)

  • Jung, D.J.;Kim, B.W.;Roh, S.H.;Kim, H.S.;Moon, W.K.;Kim, H.Y.;Jang, H.G.;Choi, L.S.;Jeon, J.T.;Lee, J.G.
    • Journal of Animal Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.33-44
    • /
    • 2008
  • The purpose of this study was to estimate the genetic parameters and trend of Landrace and Yorkshire pigs, which were raised on private farms from 1999 to 2005 and tested for their reproductive performance by the Korea Animal Improvement Association. Prior to analysis, records without pedigree or having value with larger than±3×standard deviation for the Total number of born were excluded. The effects of breed and environmental factors were estimated with least square method(Harvey, 1979), and estimation of breeding values and genetic parameters were performed on the data of 1’st litter only with GIBBSF90(Misztal, 2001) which was programmed according to Gibbs Sampling method based on Bayesian Inference by Gianola and Fernando(1986), Jensen(1994) and others. Gibbs sampling was performed 50,000 times for each parameter, and the first 5000 samples were regarded as those in burn-in period and thus, excluded for post hoc analysis. Total number of born and total number of accident were statistically significant(p<0.01) for the breed, farrowing year, farrowing season and parity effects, and the number born alive at birth was statistically significantp<(0.01) for the breed, farrowing year, farrowing season and parity effects. No particular trend was observed in the genetic and phenotypic improvement of the total number of born and number born alive at birth before 2001, when the piglet registration system started, but the tendencies of increasing for the total number of born and number born alive and decreasing for the total number of accident were observed since 2001. Somewhat higher heritability estimates of our study seems to be attributed to the situations that first parity records with poor farrowing performances were used in the analyses and it was impossible to obtain accurate reproductive performance due to the absence of criteria for record keeping at the level of individual farms.

Mapping and estimating forest carbon absorption using time-series MODIS imagery in South Korea (시계열 MODIS 영상자료를 이용한 산림의 연간 탄소 흡수량 지도 작성)

  • Cha, Su-Young;Pi, Ung-Hwan;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.517-525
    • /
    • 2013
  • Time-series data of Normal Difference Vegetation Index (NDVI) obtained by the Moderate-resolution Imaging Spectroradiometer(MODIS) satellite imagery gives a waveform that reveals the characteristics of the phenology. The waveform can be decomposed into harmonics of various periods by the Fourier transformation. The resulting $n^{th}$ harmonics represent the amount of NDVI change in a period of a year divided by n. The values of each harmonics or their relative relation have been used to classify the vegetation species and to build a vegetation map. Here, we propose a method to estimate the annual amount of carbon absorbed on the forest from the $1^{st}$ harmonic NDVI value. The $1^{st}$ harmonic value represents the amount of growth of the leaves. By the allometric equation of trees, the growth of leaves can be considered to be proportional to the total amount of carbon absorption. We compared the $1^{st}$ harmonic NDVI values of the 6220 sample points with the reference data of the carbon absorption obtained by the field survey in the forest of South Korea. The $1^{st}$ harmonic values were roughly proportional to the amount of carbon absorption irrespective of the species and ages of the vegetation. The resulting proportionality constant between the carbon absorption and the $1^{st}$ harmonic value was 236 tCO2/5.29ha/year. The total amount of carbon dioxide absorption in the forest of South Korea over the last ten years has been estimated to be about 56 million ton, and this coincides with the previous reports obtained by other methods. Considering that the amount of the carbon absorption becomes a kind of currency like carbon credit, our method is very useful due to its generality.

Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 Sentinel-1 SAR 위성영상을 이용한 지표 토양수분량 산정 가능성에 관한 연구)

  • Younghyun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.229-241
    • /
    • 2024
  • With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.

Analysis and Prediction of Sewage Components of Urban Wastewater Treatment Plant Using Neural Network (대도시 하수종말처리장 유입 하수의 성상 평가와 인공신경망을 이용한 구성성분 농도 예측)

  • Jeong, Hyeong-Seok;Lee, Sang-Hyung;Shin, Hang-Sik;Song, Eui-Yeol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.308-315
    • /
    • 2006
  • Since sewage characteristics are the most important factors that can affect the biological reactions in wastewater treatment plants, a detailed understanding on the characteristics and on-line measurement techniques of the influent sewage would play an important role in determining the appropriate control strategies. In this study, samples were taken at two hour intervals during 51 days from $1^{st}$ October to $21^{st}$ November 2005 from the influent gate of sewage treatment plant. Then the characteristics of sewage were investigated. It was found that the daily values of flow rate and concentrations of sewage components showed a defined profile. The highest and lowest peak values were observed during $11:00{\sim}13:00$ hours and $05:00{\sim}07:00$ hours, respectively. Also, it was shown that the concentrations of sewage components were strongly correlated with the absorbance measured at 300 nm of UV. Therefore, the objective of the paper is to develop on-line estimation technique of the concentration of each component in the sewage using accumulated profiles of sewage, absorbance, and flow rate which can be measured in real time. As a first step, regression analysis was performed using the absorbance and component concentration data. Then a neural network trained with the input of influent flow rate, absorbance, and inflow duration was used. Both methods showed remarkable accuracy in predicting the resulting concentrations of the individual components of the sewage. In case of using the neural network, the predicted value md of the measurement were 19.3 and 14.4 for TSS, 26.7 and 25.1 for TCOD, 5.4 and 4.1 for TN, and for TP, 0.45 to 0.39, respectively.

Applicability of the Wind Erosion Prediction System for prediction of soil loss by wind in arable land

  • Lee, Kyo-Suk;Seo, Il-Hwan;Lee, Sang-Phil;Lim, Chul-Soon;Lee, Dong-Sung;Min, Se-Won;Jung, Hyun-Gyu;Yang, Jae-Eui;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.845-857
    • /
    • 2020
  • The precise estimation of accelerated soil wind erosion that can cause severe economic and environmental impacts still has not been achieved to date. The objectives of this investigation were to verify the applicability of a Wind Erosion Prediction System (WEPS) that expressed the soil loss as mass per area for specific areas of interest on a daily basis for a single event in arable lands. To this end, we selected and evaluated the results published by Hagen in 2004 and the soil depth converted from the mass of soil losses obtained by using the WEPS. Hagen's results obtained from the WEPS model followed the 1 : 1 line between predicted and measured value for soil losses with only less than 2 kg·m-2 whereas the values between the measured and predicted loss did not show any correlation for the given field conditions due to the initial field surface condition although the model provided reasonable estimates of soil loss. Calculated soil depths of the soil loss by wind for both the observed and predicted ones ranged from 0.004 to 3.113 cm·10 a-1 and from 0 to 2.013 cm·10 a-1, respectively. Comparison of the soil depths between the observed and predicted ones did not show any good relationship, and there was no soil loss in the predicted one while slight soil loss was measured in the observed one. Therefore, varying the essential model inputs and factors related to wind speed and soil properties are needed to accurately estimate soil loss for a given field in arable land.

Estimation of Future Design Flood Under Non-Stationarity for Wonpyeongcheon Watershed (비정상성을 고려한 원평천 유역의 미래 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Park, Jihoon;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.139-152
    • /
    • 2015
  • Along with climate change, it is reported that the scale and frequency of extreme climate events show unstable tendency of increase. Thus, to comprehend the change characteristics of precipitation data, it is needed to consider non-stationary. The main objectives of this study were to estimate future design floods for Wonpyeongcheon watershed based on RCP (Representative Concentration Pathways) scenario. Wonpyeongcheon located in the Keum River watershed was selected as the study area. Historical precipitation data of the past 35 years (1976~2010) were collected from the Jeonju meteorological station. Future precipitation data based on RCP4.5 were also obtained for the period of 2011~2100. Systematic bias between observed and simulated data were corrected using the quantile mapping (QM) method. The parameters for the bias-correction were estimated by non-parametric method. A non-stationary frequency analysis was conducted with moving average method which derives change characteristics of generalized extreme value (GEV) distribution parameters. Design floods for different durations and frequencies were estimated using rational formula. As the result, the GEV parameters (location and scale) showed an upward tendency indicating the increase of quantity and fluctuation of an extreme precipitation in the future. The probable rainfall and design flood based on non-stationarity showed higher values than those of stationarity assumption by 1.2%~54.9% and 3.6%~54.9%, respectively, thus empathizing the necessity of non-stationary frequency analysis. The study findings are expected to be used as a basis to analyze the impacts of climate change and to reconsider the future design criteria of Wonpyeongcheon watershed.

Study on Discomfort of Vertical Whole-body Shock Vibration Having Various Magnitudes, Frequencies and Damping (다양한 크기와 주파수 그리고 감쇠를 갖는 상하방향 전신 충격진동에 대한 불편함 연구)

  • Ahn, Se-Jin;Griffin, Michael J.;Yoo, Wan-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.50-57
    • /
    • 2007
  • Shocks are excited by impulsive forces and cause discomfort in vehicles. Current standards define means of evaluating shocks and predicting their discomfort, but the methods are based on research with a restricted range of shocks. This experimental study was designed to investigate the discomfort of seated subjects exposed to a wide range of vertical shocks. Shocks were produced from the responses of one degree-of-freedom models, with 16 natural frequencies (from 0.5 to 16 Hz) and four damping ratios (0.05 0.1, 0.2 and 0.4), to a hanning-windowed half-sine force inputs. Each type of shock was presented at five vibration dose values in the range $0.35\;ms^{-1.75}$ to $2.89\;ms^{-1.75}$. Fifteen subjects used magnitude estimation method to judge the discomfort of all shocks. The exponent in Stevens' power law, indicating the rate of growth in discomfort with shock magnitude, decreased with increasing fundamental frequency of the shocks. At all magnitudes, the equivalent comfort contours showed greatest sensitivity to shocks having fundamental frequencies in the range 4 to 12.5 Hz. At low magnitudes the variations in discomfort with the shock fundamental frequency were similar to the frequency weighting $W_b$ in BS 6841, but low frequency high magnitudes shocks produced greater discomfort than predicted by this weighting. At some frequencies, for the same unweighted vibration dose value, there were small but significant differences in discomfort caused by shocks having different damping ratios. The rate of increase in discomfort with increasing shock magnitude depends on the fundamental frequency of the shock. In consequence, the frequency-dependence of discomfort produced by vertical shocks depends on shock magnitude. For shocks of low and moderate discomfort, the current methods seem reasonable, but the response to higher magnitude shocks needs further investigation.