• 제목/요약/키워드: Estimation of Posterior probability and probability density function

검색결과 5건 처리시간 0.024초

신경회로망과 벡터양자화에 의한 사후확률과 확률 밀도함수 추정 및 검증 (Verification and estimation of a posterior probability and probability density function using vector quantization and neural network)

  • 고희석;김현덕;이광석
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.325-328
    • /
    • 1996
  • In this paper, we proposed an estimation method of a posterior probability and PDF(Probability density function) using a feed forward neural network and code books of VQ(vector quantization). In this study, We estimates a posterior probability and probability density function, which compose a new parameter with well-known Mel cepstrum and verificate the performance for the five vowels taking from syllables by NN(neural network) and PNN(probabilistic neural network). In case of new parameter, showed the best result by probabilistic neural network and recognition rates are average 83.02%.

  • PDF

베타-이항 분포에서 Gibbs sampler를 이용한 평가 일치도의 사후 분포 추정 (Posterior density estimation of Kappa via Gibbs sampler in the beta-binomial model)

  • 엄종석;최일수;안윤기
    • 응용통계연구
    • /
    • 제7권2호
    • /
    • pp.9-19
    • /
    • 1994
  • 평가자간 평가 일치도(measure of agreement)를 나타내는 모수 $\kappa$와 양성 반응 비율 $\mu$를 지닌 베타-이항 분포 모형은 심리학 분야에서 많이 다루어지는 모형이다. 이 모형에서 $\kappa$에 대한 추정은 $\mu$가 0에 가까운 값을 가질 때 우도함수를 이용한 전통적 추론 방법의 적용이 어렵다. 본 논문에서는 이러한 문제를 Gibbs sampler를 이용한 Bayesian 분석 방법을 적용시켜 주변 사후 밀도 함수를 추정하였으며 이를 이용하여 Bayesian 추정값도 구하였다.

  • PDF

Estimation of the exponentiated half-logistic distribution based on multiply Type-I hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.47-64
    • /
    • 2020
  • In this paper, we derive some estimators of the scale parameter of the exponentiated half-logistic distribution based on the multiply Type-I hybrid censoring scheme. We assume that the shape parameter λ is known. We obtain the maximum likelihood estimator of the scale parameter σ. The scale parameter is estimated by approximating the given likelihood function using two different Taylor series expansions since the likelihood equation is not explicitly solved. We also obtain Bayes estimators using prior distribution. To obtain the Bayes estimators, we use the squared error loss function and general entropy loss function (shape parameter q = -0.5, 1.0). We also derive interval estimation such as the asymptotic confidence interval, the credible interval, and the highest posterior density interval. Finally, we compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. The average length of 95% intervals and the corresponding coverage probability are also obtained.

Improved Super-Resolution Algorithm using MAP based on Bayesian Approach

  • 장재용;조효문;조상복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.35-37
    • /
    • 2007
  • Super resolution using stochastic approach which based on the Bayesian approach is to easy modeling for a priori knowledge. Generally, the Bayesian estimation is used when the posterior probability density function of the original image can be established. In this paper, we introduced the improved MAP algorithm based on Bayesian which is stochastic approach in spatial domain. And we presented the observation model between the HR images and LR images applied with MAP reconstruction method which is one of the major in the SR grid construction. Its test results, which are operation speed, chip size and output high resolution image Quality. are significantly improved.

  • PDF

Parzen 윈도우 추정에 기반한 다중 초점 이미지 융합 기법 (Multi-focus Image Fusion Technique Based on Parzen-windows Estimates)

  • ;박대철
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.75-88
    • /
    • 2008
  • 본 논문은 입력 이미지 블록의 클래스 조건부 확률 밀도 함수의 커널 추정에 기반한 공간 영역에서의 다중초점 이미지 융합 기법을 제안한다. 이미지 융합 문제를 시험 패턴으로부터 추정된 유사 밀도 함수에 의해 사후 클래스 확률, P($w_{i}{\mid}B_{ikl}$),을 계산하는 분류 임무로 접근하였다. C개의 입력 이미지 $I_{i}$에 대하여 제안한 방법은 i 클래스 $w_{i}$를 정의하고 베이즈 결정 원리에 기초하여 판별 함수를 최대화하는 PxQ 블록 $B_{ikl}$의 집합에 의해 표현되는 결정 지도로 부터 융합 이미지 Z(k,l)를 형성한다. 출력 화질의 척도로서 RMSE 와 상호 정보량인 MI를 사용하여 제안한 기법의 성능이 평가되었다. 커널 함수의 폭 ${\sigma}$ 도 변화시키고, 다른 종류의 커널과 블록 크기를 변화시켜 가며 성능평가를 수행하였다. 제안한 가법은 C=2 와 C=3에 대하여 시험하였고 시험 결과는 좋은 성능을 보였다.

  • PDF