• 제목/요약/키워드: Estimation models

검색결과 2,843건 처리시간 0.024초

레이저 미세 가공 공정에서 광센서를 이용한 선폭 예측을 위한 통계적 모델의 개발 (Development of Statistical Model for Line Width Estimation in Laser Micro Material Processing Using Optical Sensor)

  • 박영환;이세헌
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.27-37
    • /
    • 2005
  • Direct writing technology on the silicon wafer surface is used to reduce the size of the chip as the miniature trend in electronic circuit. In order to improve the productivity and efficiency, the real time quality estimation is very important in each semiconductor process. In laser marking, marking quality is determined by readability which is dependant on the contrast of surface, the line width, and the melting depth. Many researchers have tried to find theoretical and numerical estimation models fur groove geometry. However, these models are limited to be applied to the real system. In this study, the estimation system for the line width during the laser marking was proposed by process monitoring method. The light intensity emitted by plasma which is produced when irradiating the laser to the silicon wafer was measured using the optical sensor. Because the laser marking is too fast to measure with external sensor, we build up the coaxial monitoring system. Analysis for the correlation between the acquired signals and the line width according to the change of laser power was carried out. Also, we developed the models enabling the estimation of line width of the laser marking through the statistical regression models and may see that their estimating performances were excellent.

Methods and Techniques for Variance Component Estimation in Animal Breeding - Review -

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권3호
    • /
    • pp.413-422
    • /
    • 2000
  • In the class of models which include random effects, the variance component estimates are important to obtain accurate predictors and estimators. Variance component estimation is straightforward for balanced data but not for unbalanced data. Since orthogonality among factors is absent in unbalanced data, various methods for variance component estimation are available. REML estimation is the most widely used method in animal breeding because of its attractive statistical properties. Recently, Bayesian approach became feasible through Markov Chain Monte Carlo methods with increasingly powerful computers. Furthermore, advances in variance component estimation with complicated models such as generalized linear mixed models enabled animal breeders to analyze non-normal data.

Generalized nonlinear percentile regression using asymmetric maximum likelihood estimation

  • Lee, Juhee;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • 제28권6호
    • /
    • pp.627-641
    • /
    • 2021
  • An asymmetric least squares estimation method has been employed to estimate linear models for percentile regression. An asymmetric maximum likelihood estimation (AMLE) has been developed for the estimation of Poisson percentile linear models. In this study, we propose generalized nonlinear percentile regression using the AMLE, and the use of the parametric bootstrap method to obtain confidence intervals for the estimates of parameters of interest and smoothing functions of estimates. We consider three conditional distributions of response variables given covariates such as normal, exponential, and Poisson for three mean functions with one linear and two nonlinear models in the simulation studies. The proposed method provides reasonable estimates and confidence interval estimates of parameters, and comparable Monte Carlo asymptotic performance along with the sample size and quantiles. We illustrate applications of the proposed method using real-life data from chemical and radiation epidemiological studies.

Axial capacity of FRP reinforced concrete columns: Empirical, neural and tree based methods

  • Saha Dauji
    • Structural Engineering and Mechanics
    • /
    • 제89권3호
    • /
    • pp.283-300
    • /
    • 2024
  • Machine learning (ML) models based on artificial neural network (ANN) and decision tree (DT) were developed for estimation of axial capacity of concrete columns reinforced with fiber reinforced polymer (FRP) bars. Between the design codes, the Canadian code provides better formulation compared to the Australian or American code. For empirical models based on elastic modulus of FRP, Hadhood et al. (2017) model performed best. Whereas for empirical models based on tensile strength of FRP, as well as all empirical models, Raza et al. (2021) was adjudged superior. However, compared to the empirical models, all ML models exhibited superior performance according to all five performance metrics considered. The performance of ANN and DT models were comparable in general. Under the present setup, inclusion of the transverse reinforcement information did not improve the accuracy of estimation with either ANN or DT. With selective use of inputs, and a much simpler ANN architecture (4-3-1) compared to that reported in literature (Raza et al. 2020: 6-11-11-1), marginal improvement in correlation could be achieved. The metrics for the best model from the study was a correlation of 0.94, absolute errors between 420 kN to 530 kN, and the range being 0.39 to 0.51 for relative errors. Though much superior performance could be obtained using ANN/DT models over empirical models, further work towards improving accuracy of the estimation is indicated before design of FRP reinforced concrete columns using ML may be considered for design codes.

Impact by Estimation Error of Hourly Horizontal Global Solar Radiation Models on Building Energy Performance Analysis on Building Energy Performance Analysis

  • Kim, Kee Han;Oh, John Kie-Whan
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.3-10
    • /
    • 2014
  • Impact by estimation error of hourly horizontal global solar radiation in a weather file on building energy performance was investigated in this study. There are a number of weather parameters in a given weather file, such as dry-bulb, wet-bulb, dew-point temperatures; wind speed and direction; station pressure; and solar radiation. Most of them except for solar radiation can be easily obtained from weather stations located on the sites worldwide. However, most weather stations, also including the ones in South Korea, do not measure solar radiation because the measuring equipment for solar radiation is expensive and difficult to maintain. For this reason, many researchers have studied solar radiation estimation models and suggested to apply them to predict solar radiation for different weather stations in South Korea, where the solar radiation is not measured. However, only a few studies have been conducted to identify the impact caused by estimation errors of various solar radiation models on building energy performance analysis. Therefore, four different weather files using different horizontal global solar radiation data, one using measured global solar radiation, and the other three using estimated global solar radiation models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM) were packed into TRY formatted weather files in this study. These were then used for office building energy simulations to compare their energy consumptions, and the results showed that there were differences in the energy consumptions due to these four different solar radiation data. Additionally, it was found that using hourly solar radiation from the estimation models, which had a similar hourly tendency with the hourly measured solar radiation, was the most important key for precise building energy simulation analysis rather than using the solar models that had the best of the monthly or yearly statistical indices.

Shear strength prediction for SFRC and UHPC beams using a Bayesian approach

  • Cho, Hae-Chang;Park, Min-Kook;Hwang, Jin-Ha;Kang, Won-Hee;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.503-514
    • /
    • 2020
  • This study proposes prediction models for the shear strength of steel fiber reinforced concrete (SFRC) and ultra-high-performance fiber reinforced concrete (UHPC) beams using a Bayesian parameter estimation approach and a collected experimental database. Previous researchers had already proposed shear strength prediction models for SFRC and UHPC beams, but their performances were limited in terms of their prediction accuracies and the applicability to UHPC beams. Therefore, this study adopted a statistical approach based on a collected database to develop prediction models. In the database, 89 and 37 experimental data for SFRC and UHPC beams without stirrups were collected, respectively, and the proposed equations were developed using the Bayesian parameter estimation approach. The proposed models have a simplified form with important parameters, and in comparison to the existing prediction models, provide unbiased high prediction accuracy.

재활용 도로재료의 회복탄성계수 산정을 위한 적용 모델의 평가 (Evaluation of Resilient Modulus Models for Recycled Materials)

  • 손영환
    • 한국농공학회논문집
    • /
    • 제52권2호
    • /
    • pp.51-57
    • /
    • 2010
  • Many models have been used to represent the effects of confining stress, bulk stress, and shear stress on the value of the resilient modulus (Mr). This study was conducted to estimate Mr of the recycled materials such as recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) through the repeated load cyclic test. Also, two models were applied to estimation of Mr for comparing between measured Mr values and predicted Mr values. The first model (A-model) can provide a quick and easy estimation of the Mr based on the bulk stress, while the second model (N-model) includes not only the bulk stress but also the shear stress. Statistical analysis indicated that all results using the both of models are significant at a 95 % confidence level. Therefore, the both of models could be used as an effective prediction model of Mr for RCA and RAP. Especially, the Model 2 including the parameters of the bulk stress and the shear stress could give more reliable estimation at the high range of Mr values.

Estimation of structural vector autoregressive models

  • Lutkepohl, Helmut
    • Communications for Statistical Applications and Methods
    • /
    • 제24권5호
    • /
    • pp.421-441
    • /
    • 2017
  • In this survey, estimation methods for structural vector autoregressive models are presented in a systematic way. Both frequentist and Bayesian methods are considered. Depending on the model setup and type of restrictions, least squares estimation, instrumental variables estimation, method-of-moments estimation and generalized method-of-moments are considered. The methods are presented in a unified framework that enables a practitioner to find the most suitable estimation method for a given model setup and set of restrictions. It is emphasized that specifying the identifying restrictions such that they are linear restrictions on the structural parameters is helpful. Examples are provided to illustrate alternative model setups, types of restrictions and the most suitable corresponding estimation methods.

A Fuzzy Logic Based Software Development Cost Estimation Model with improved Accuracy

  • Shrabani Mallick;Dharmender Singh Kushwaha
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.17-22
    • /
    • 2024
  • Software cost and schedule estimation is usually based on the estimated size of the software. Advanced estimation techniques also make use of the diverse factors viz, nature of the project, staff skills available, time constraints, performance constraints, technology required and so on. Usually, estimation is based on an estimation model prepared with the help of experienced project managers. Estimation of software cost is predominantly a crucial activity as it incurs huge economic and strategic investment. However accurate estimation still remains a challenge as the algorithmic models used for Software Project planning and Estimation doesn't address the true dynamic nature of Software Development. This paper presents an efficient approach using the contemporary Constructive Cost Model (COCOMO) augmented with the desirable feature of fuzzy logic to address the uncertainty and flexibility associated with the cost drivers (Effort Multiplier Factor). The approach has been validated and interpreted by project experts and shows convincing results as compared to simple algorithmic models.

가우시안 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정 (Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using Gaussian copula)

  • 곽민정
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.203-213
    • /
    • 2017
  • 우리는 이변량 경시적 자료의 조건부 결합 분포를 추정하기 위하여 회귀 모형과 코플라 모형을 연구하였다. 주변 분포의 추정을 위하여 시변 변환 모형을 고려하였고, 이변량 반응변수 각각에 대한 주변 분포를 가우시안 코플라를 이용하여 결합하여 조건부 결합 분포를 추정하였다. 우리가 제안한 모형은 조건부 평균 모형만으로 자료를 설명하기 어려운 경우에 적용될 수 있다. 시변 변환 모형과 가우시안 코플라 모형을 결합한 본 논문의 방법은 반복 측정된 이변량 경시적 자료에 대한 모형화가 용이하며 해석하기 쉬운 장점이 있다. 우리는 본 논문의 방법을 반복 측정된 이변량 콜레스테롤 자료를 분석하는데 적용하여 보았다.