• Title/Summary/Keyword: Essential mineral

Search Result 317, Processing Time 0.027 seconds

A study on Model of Database for GIS Analysis of Subsidence in Mine Area (폐광지역 지반침하 GIS분석을 위한 데이터베이스 모델 연구)

  • Kwon, Kwang-Soo;Chang, Yoon-Seop;Yu, Shik;Park, Hyeong-Dong
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.339-346
    • /
    • 2002
  • Efficient database and DBMS are essential for GIS analysis of subsidence in the abandoned mine area. A data structure and a suitable analysis method were proposed for an efficient analysis of subsidence in the abandoned mine area. Data models for the location of mine, ground water level, subsidence measurement and subsidence cracks were defined and structured to the database.

A Study on the Fluid Inclusions in the Minerals from the Dae Hwa Tungsten-Molybdenum Deposits (대화(大華) 중석휘수연광상산(重石輝水鉛床産) 광물중(鍵物中)의 유체포유물(流體包有物)에 관(關)한 연구(硏究))

  • Park, Hi In;Choi, Suck Won
    • Economic and Environmental Geology
    • /
    • v.7 no.2
    • /
    • pp.63-78
    • /
    • 1974
  • Daehwa tungsten-molybdenum deposits is fissure filled quartz veins occurring in Precambrian granite gneiss adjacent to the contact with Mesozoic biotite granite mass. Essential ore minerals are molybdenum and wolframite accompaning scheelite, cassiterite, chalcopyrite, pyrrhotite, pyrite and bismuthinites. Gangue minerals are quartz and little muscovte, fluorite, beryl and Carbonate minerals. Fluid inclusions in quartz, fluorite, beryl, scheelite and calcite have filling temperature ranges of $170-353^{\circ}C$. According to the studies of mineral paragenesis and filling temperature of fluid inclusion indicate that main tungsten and molybdnum mineralization have taken place with the minerals whose filling temperature ranges 205 to $353^{\circ}C$. Liquid $CO_2$ bearing fluid inclusions are characteristic in the quartz and early fluorite of tungsten and tungsten bearing molybdenum veins but hardly recognized from molybdemun veins. Estimated $CO_2$ concentration according to diagram proposed by the Takenouchi ranges from 10 to 20wt%. These facts suggest that tungsten mineralization may be related to the $CO_2$ content of the hydrothermal solution during the mineralizing period.

  • PDF

THE INVESTIGATION FOR THE EFFECT 01 THE SOLUBILITY PARAMETER BETWEEN OIL BINDER AND SOLVENT TO THE PRODUCT QUALITY IN THE WET TYPE BACK INJECTION PRESS PROCESS.

  • Y, Tae-Young;K, Jong-Kuy;L, Joo-Wan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.105-110
    • /
    • 1998
  • In the make-up product, Eye-shadow products have several purposes of enhancing product quality such as providing the beauty (variation of shape, clean appearance), feeling, continuity and adhesion. In this paper, newly developed wet type back injection press process is introduced so as to increase higher value products which providing various the beauty. The solvent takes an essential role to provide the fluidity of the powder bulk during the pressed-process of wet type pressed product. In this study, the effect of solvent in the oil binder was investigated, And the higher quality condition of the wet type pressed product was built to apply cosmetic preparation. Firstly, the system was designed powder phase as non treated pigment. The oil binder phase is categorized as hydrocarbons(Mineral oil, Squalane), Silicones(Methicone, Dimethicone ), esters (Octyldodecanol, Octyl Dodecyl Myristate). The solvent phase used was C 7-8 isoparaffin and Isopropyl Alcohol. The interaction of oil binder and solvent is investigated by measuring mass of final oil binder and the each solubility parameter. It was found that the higher the solubility the higher the degree of change in the final composition of the oil binder. In order to maintain the quality of the final product, the solvent used in pressed-process should be hydrophobic with oil binder.

  • PDF

A Study of the Chemical Components of the Halophyte Suaeda asparagoides $M_{IQ}$ (염생식물 나문재(Suaeda asparagoides $M_{IQ}$)의 이화학적 성분 조성)

  • Lee, Young-Keun;Lee, Yoon-Shin;Jung, Eun-Kyung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.3
    • /
    • pp.452-457
    • /
    • 2010
  • To obtain basic information on the utilization of Suaeda (S.) asparagoides $M_{IQ}$ as a raw material in food, it's chemical components of were investigated. S. asparagoides $M_{IQ}$ from the Hwaseong-si in Korea was used after drying and grinding with powder. The total dietary fiber, insoluble dietary fiber and soluble dietary fiber contents of S. asparagoides $M_{IQ}$ were found to be 39.41%, 37.63% and 1.78%, respectively. Macromineral components of S. asparagoides $M_{IQ}$ were Na (7.6%), K (2.4%) and Mg (0.6%). High contents of microminerals such as Cu, Mn and Zn were also found. Lysine and methionine which are essential amino acids were detected with the value of 215 mg/100 g and 23.2 mg/100 g, respectively. S. asparagoides $M_{IQ}$ that was harvested in May was higher in crude protein than that harvested in September but the crude fat content of that which was harvested in September was twice as high as that harvested in May.

Extraction of the atmospheric path radiance in relation to retrieval of ocean color information from the TM and SeaWiFS imageries

  • Ahn, Yu-Hwan;Shanmugam, P.
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.241-246
    • /
    • 2004
  • The ocean signal that reaches the detector of an imaging system after multiple interactions with the atmospheric molecules and aerosols was retrieved from the total signal recorded at the top of the atmosphere (TOA). A simple method referred to as 'Path Extraction' applied to the Landsat-TM ocean imagery of turbid coastal water was compared with the conventional dark-pixel subtraction technique. The shape of the path-extracted water-leaving radiance spectrum resembled the radiance spectrum measured in-situ. The path-extraction was also extended to the SeaWiFS ocean color imagery and compared with the standard SeaWiFS atmospheric correction algorithm, which relays on the assumption of zero water leaving radiance at the two NIR wavebands (765 and 865nm). The path-extracted water-leaving radiance was good agreement with the measured radiance spectrum. In contrast, the standard SeaWiFS atmospheric correction algorithm led to essential underestimation of the water-leaving radiance in the blue-green part of the spectrum. The reason is that the assumption of zero water-leaving radiance at 755 and 865nm fails due to backscattering by suspended mineral particles. Therefore, the near infrared channels 765 and 865nm used fur deriving the aerosol information are no longer valid for turbid coastal waters. The path-extraction is identified as a simple and efficient method of extracting the path radiance largely introduced due to light interaction through the complex atmosphere carried several aerosol and gaseous components and at the air-sea interface.interface.

  • PDF

Alkalinity Measurement of Groundwater using Gran Titration Method (Gran적정법을 이용한 지하수 알칼리도분석방법)

  • Kim, Kangjoo;Lee, Jin-Won;Choi, Seung-Hyun;Kim, Seok-Hwi;Kim, Hyunkoo;Hamm, Se-Yeong;Kim, Rak-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • Alkalinity is an essential parameter for understanding geochemical processes and calculating partial pressure of $CO_2$, dissolved inorganic carbon, and mineral saturation indices. The Gran Titration Method (GTM) is one of the most accurate methods for measuring the alkalinity in water samples. However, this method has not been widely employed in measuring groundwater alkalinity in Korea, probably due to inadequate and insufficient understanding of the method. In this regard, this article was prepared to introduce GTM and related know-hows learned from the authors' experiences in measuring alkalinity. This paper also introduces a MS Excel-based alkalinity calculator as a handy tool for GTM.

Primary metabolic responses in the leaves and roots of bell pepper plants subjected to microelements-deficient conditions

  • Sung, Jwakyung;Lee, Yejin;Lee, Seulbi
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.179-189
    • /
    • 2021
  • Plants need essential mineral elements to favorably develop and to complete their life cycle. Despite the irreplaceable roles of microelements, they are often ignored due to the relative importance of macroelements with their influence on crop growth and development. We focused on the changes in primary metabolites in the leaves and roots of bell pepper plants under 6 microelements-deficient conditions: Copper (Cu), Zinc (Zn), Iron (Fe), Manganese (Mn), Boron (B) and Molybdenum (Mo). Bell pepper plants were grown in hydroponic containers, and individual elements were adjusted to 1/10-strength of Hoagland nutrient solution. A remarkable perturbation in the abundance of the primary metabolites was observed for the Fe and B and the Mn and B deficiencies in the leaves and roots, respectively. The metabolites with up-accumulation in the Fe-deficient leaves were glucose, fructose, xylose, glutamine, asparagine and serine. In contrast, the Mn deficiency also resulted in a higher accumulation of glucose, fructose, xylose, galactose, serine, glycine, β-alanine, alanine and valine in the roots. The B deficiency noticeably accumulated alanine, valine and phenylalanine in the roots while it showed a substantial decrease in glucose, fructose and xylose. These results show that the primary metabolism could be seriously disturbed due to a microelement deficiency, and the alteration may be either the specific or adaptive responses of bell pepper plants.

Total value recovery in the copper smelting and refining operations

  • Kim Joe. Y.;Kong Bong S.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.590-597
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and $Dor\'{e}$ furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyro-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

Review on Methods of Hydro-Mechanical Coupled Modeling for Long-term Evolution of the Natural Barriers

  • Chae-Soon Choi;Yong-Ki Lee;Sehyeok Park;Kyung-Woo Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.429-453
    • /
    • 2022
  • Numerical modeling and scenario composition are needed to characterize the geological environment of the disposal site and analyze the long-term evolution of natural barriers. In this study, processes and features of the hydro-mechanical behavior of natural barriers were categorized and represented using the interrelation matrix proposed by SKB and Posiva. A hydro-mechanical coupled model was evaluated for analyzing stress field changes and fracture zone re-activation. The processes corresponding to long-term evolution and the hydro-mechanical mechanisms that may accompany critical processes were identified. Consequently, practical numerical methods could be considered for these geological engineering issues. A case study using a numerical method for the stability analysis of an underground disposal system was performed. Critical stress distribution regime problems were analyzed numerically by considering the strata's movement. Another case focused on the equivalent continuum domain composition under the upscaling process in fractured rocks. Numerical methods and case studies were reviewed, confirming that an appropriate and optimized modeling technique is essential for studying the stress state and geological history of the Korean Peninsula. Considering the environments of potential disposal sites in Korea, selecting the optimal application method that effectively simulates fractured rocks should be prioritized.

MINERAL PROCESSING and COPPER EXRACTIVE METALLURGY Complete Metal Recovery

  • Kim, J.Y.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.22-34
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and Dore furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyre-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF