• 제목/요약/키워드: Escherichia coli-derived recombinant human bone

검색결과 5건 처리시간 0.019초

Bone Healing Properties of Autoclaved Autogenous Bone Grafts Incorporating Recombinant Human Bone Morphogenetic Protein-2 and Comparison of Two Delivery Systems in a Segmental Rabbit Radius Defect

  • Choi, Eun Joo;Kang, Sang-Hoon;Kwon, Hyun-Jin;Cho, Sung-Won;Kim, Hyung Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제36권3호
    • /
    • pp.94-102
    • /
    • 2014
  • Purpose: This study aims to validate the effect of autoclaved autogenous bone (AAB), incorporating Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2), on critical-sized, segmental radius defects in rabbits. Delivery systems using absorbable collagen sponge (ACS) and fibrin glue (FG) were also evaluated. Methods: Radius defects were made in 12 New Zealand white rabbits. After autoclaving, the resected bone was reinserted and fixed. The animals were classified into three groups: only AAB reinserted (group 1, control), and AAB and ErhBMP-2 inserted using an ACS (group 2) or FG (group 3) as a carrier. Animals were sacrificed six or 12 weeks after surgery. Specimens were evaluated using radiology and histology. Results: Micro-computed tomography images showed the best bony union in group 2 at six and 12 weeks after operation. Quantitative analysis showed all indices except trabecular thickness were the highest in group 2 and the lowest in group 1 at twelve weeks. Histologic results showed the greatest bony union between AAB and radial bone at twelve weeks, indicating the highest degree of engraftment. Conclusion: ErhBMP-2 increases bony healing when applied on AAB graft sites. In addition, the ACS was reconfirmed as a useful delivery system for ErhBMP-2.

Improvement of the osteogenic potential of ErhBMP-2-/EGCG-coated biphasic calcium phosphate bone substitute: in vitro and in vivo activity

  • Hwang, Jae-ho;Oh, Seunghan;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • 제49권2호
    • /
    • pp.114-126
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the enhancement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) and epigallocatechin-3-gallate (EGCG). Methods: The cell viability, differentiation, and mineralization of osteoblasts was tested with ErhBMP-2-/EGCG solution. Coated BCP surfaces were also investigated. Standardized, 6-mm diameter defects were created bilaterally on the maxillary sinus of 10 male New Zealand white rabbits. After removal of the bony windows and elevation of sinus membranes, ErhBMP-2-/EGCG-coated BCP was applied on one defect in the test group. BCP was applied on the other defect to form the control group. The animals were sacrificed at 4 or 8 weeks after surgery. Histologic and histometric analyses of the augmented graft and surrounding tissue were performed. Results: The 4-week and 8-week test groups showed more new bone (%) than the corresponding control groups (P<0.05). The 8-week test group showed more new bone (%) than the 4-week test group (P<0.05). Conclusions: ErhBMP-2-/EGCG-coated BCP was effective as a bone graft material, showing enhanced osteogenic potential and minimal side effects in a rabbit sinus augmentation model.

Role of γ-glutamyltranspeptidase in osteoclastogenesis induced by Fusobacterium nucleatum

  • Kim, Aeryun;Kim, Ji-Hye
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.127-133
    • /
    • 2021
  • We previously showed that γ-glutamyltranspeptidase (GGT), an enzyme involved in glutathione metabolism, in Bacillus subtilis acts as a virulence factor for osteoclastogenesis via the RANKL-dependent pathway. Hence, it can be hypothesized that GGT of periodontopathic bacteria acts as a virulence factor in bone destruction. Because Fusobacterium nucleatum, which is a periodontopathic pathogen, has GGT with a primary structure similar to that of B. subtilis GGT (37.7% identify), the bone-resorbing activity of F. nucleatum GGT was examined here. Recombinant GGT (rGGT) of F. nucleatum was expressed in Escherichia coli and purified using the His tag of rGGT. F. nucleatum rGGT (Fn rGGT) was expressed as a precursor of GGT, and then processed to a heavy subunit and a light subunit, which is characteristic of general GGTs, including the human and B. subtilis enzymes. Osteoclastogenesis was achieved in a co-culture system of mouse calvaria-derived osteoblasts and bone marrow cells. Fn rGGT induced osteoclastogenesis to a level similar to that of B. subtilis rGGT; furthermore, osteoclastogenesis was induced in a dose-dependent manner. These results suggest that F. nucleatum GGT possesses a virulent bone-resorbing activity, which could play an important role in the pathogenesis of periodontitis.

Eight-week healing of grafted calvarial bone defects with hyperbaric oxygen therapy in rats

  • Oh, Seo-Eun;Hu, Kyung-Seok;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • 제49권4호
    • /
    • pp.228-236
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the synergistic effect of adjunctive hyperbaric oxygen (HBO) therapy on new bone formation and angiogenesis after 8 weeks of healing. Methods: Sprague-Dawley rats (n=28) were split into 2 groups according to the application of adjunctive HBO therapy: a group that received HBO therapy (HBO group [n=14]) and another group that did not receive HBO therapy (NHBO group [n=14]). Each group was divided into 2 subgroups according to the type of bone graft material: a biphasic calcium phosphate (BCP) subgroup and an Escherichia coli-derived recombinant human bone morphogenetic protein-2-/epigallocatechin-3-gallate-coated BCP (mBCP) subgroup. Two identical circular defects with a 6-mm diameter were made in the right and left parietal bones of each rat. One defect was grafted with bone graft material (BCP or mBCP). The other defect was not grafted. The HBO group received 2 weeks of adjunctive HBO therapy (1 hour, 5 times a week). The rats were euthanized 8 weeks after surgery. The specimens were prepared for histologic analysis. Results: New bone (%) was higher in the NHBO-mBCP group than in the NHBO-BCP and control groups (P<0.05). Blood vessel count (%) and vascular endothelial growth factor staining (%) were higher in the HBO-mBCP group than in the NHBO-mBCP group (P<0.05). Conclusions: HBO therapy did not have a positive influence on bone formation irrespective of the type of bone graft material applied after 8 weeks of healing. HBO therapy had a positive effect on angiogenic activity.

Four-week histologic evaluation of grafted calvarial defects with adjunctive hyperbaric oxygen therapy in rats

  • Chang, Hyeyoon;Oh, Seo-Eun;Oh, Seunghan;Hu, Kyung-Seok;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • 제46권4호
    • /
    • pp.244-253
    • /
    • 2016
  • Purpose: The aim of this study was to characterize the healing in the grafted calvarial defects of rats after adjunctive hyperbaric oxygen therapy. Methods: Twenty-eight male Sprague-Dawley rats (body weight, 250-300 g) were randomly divided into two treatment groups: with hyperbaric oxygen therapy (HBO; n=14) and without HBO (NHBO; n=14). Each group was further subdivided according to the bone substitute applied: biphasic calcium phosphate (BCP; n=7) and surface-modified BCP (mBCP; n=7). The mBCP comprised BCP coated with Escherichia-coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) and epigallocatechin-3-gallate (EGCG). Two symmetrical circular defects (6-mm diameter) were created in the right and left parietal bones of each animal. One defect was assigned as a control defect and received no bone substitute, while the other defect was filled with either BCP or mBCP. The animals were allowed to heal for 4 weeks, during which those in the HBO group underwent 5 sessions of HBO. At 4 weeks, the animals were sacrificed, and the defects were harvested for histologic and histomorphometric analysis. Results: Well-maintained space was found in the grafted groups. Woven bone connected to and away from the defect margin was formed. More angiogenesis was found with HBO and EGCG/BMP-2 (P<0.05). None of the defects achieved complete defect closure. Increased new bone formation with HBO or EGCG/BMP-2 was evident in histologic evaluation, but it did not reach statistical significance in histometric analysis. A synergic effect between HBO and EGCG/BMP-2 was not found. Conclusions: Within the limitations of this study, the present findings indicate that adjunctive HBO and EGCG/BMP-2 could be beneficial for new bone formation in rat calvarial defects.