• 제목/요약/키워드: Escherichia coli O-antigen gene cluster

검색결과 4건 처리시간 0.02초

Genetic Characterization of the Escherichia coli O66 Antigen and Functional Identification of its wzy Gene

  • Cheng, Jiansong;Liu, Bin;Bastin David A.;Han, Weiqing;Wang, Lei;Feng Lu
    • Journal of Microbiology
    • /
    • 제45권1호
    • /
    • pp.69-74
    • /
    • 2007
  • Escherichia coli is a clonal species, and occurs as both commensal and pathogenic strains, which are normally classified on the basis of their O, H, and K antigens. The O-antigen (O-specific polysaccharide), which consists of a series of oligosaccharide (O-unit) repeats, contributes major antigenic variability to the cell surface. The O-antigen gene cluster of E. coli O66 was sequenced in this study. The genes putatively responsible for the biosynthesis of dTDP-6-deoxy-L-talose and GDP-mannose, as well as those responsible for the transfer of sugars and for O-unit processing were identified based on their homology. The function of the wzy gene was confirmed by the results of a mutation test. Genes specific for E. coli O66 were identified via PCR screening against representatives of 186 E. coli and Shigella O type strains. The comparison of intergenic sequences located between galF and the O-antigen gene cluster in a range of E. coli and Shigella showed that this region may perform an important function in the homologous recombination of the O-antigen gene clusters.

Two Enteropathogenic Escherichia coli Strains Representing Novel Serotypes and Investigation of Their Roles in Adhesion

  • Wang, Jing;Jiao, HongBo;Zhang, XinFeng;Zhang, YuanQing;Sun, Na;Yang, Ying;Wei, Yi;Hu, Bin;Guo, Xi
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1191-1199
    • /
    • 2021
  • Enteropathogenic Escherichia coli (EPEC), which belongs to the attaching and effacing diarrheagenic E. coli strains, is a major causative agent of life-threatening diarrhea in infants in developing countries. Most EPEC isolates correspond to certain O serotypes; however, many strains are non-typeable. Two EPEC strains, EPEC001 and EPEC080, which could not be serotyped during routine detection, were isolated. In this study, we conducted an in-depth characterization of their putative O-antigen gene clusters (O-AGCs) and also performed constructed mutagenesis of the O-AGCs for functional analysis of O-antigen (OAg) synthesis. Sequence analysis revealed that the occurrence of O-AGCs in EPEC001 and E. coli O132 may be mediated by recombination between them, and EPEC080 and E. coli O2/O50 might acquire each O-AGC from uncommon ancestors. We also indicated that OAg-knockout bacteria were highly adhesive in vitro, except for the EPEC001 wzy derivative, whose adherent capability was less than that of its wild-type strain, providing direct evidence that OAg plays a key role in EPEC pathogenesis. Together, we identified two EPEC O serotypes in silico and experimentally, and we also studied the adherent capabilities of their OAgs, which highlighted the fundamental and pathogenic role of OAg in EPEC.

Improved Detection of Viable Escherichia coli O157:H7 in Milk by Using Reverse Transcriptase-PCR

  • Choi, Suk-Ho;Lee, Seung-Bae
    • 한국축산식품학회지
    • /
    • 제31권2호
    • /
    • pp.158-165
    • /
    • 2011
  • A sensitive reverse transcriptase-PCR (RT-PCR) method to detect viable Escherichia coli O157:H7 in milk was established. The primer sets were designed based on the nucleotide sequences of the rfbE (per) and wbdN genes in the O157 antigen gene cluster of E. coli O157:H7. RT-PCR using five different primer sets yielded DNA with sizes of 655, 518, 450, and 149-bp, respectively. All five of the E. coli O157:H7 strains were detected by RT-PCR, but 11 other bacterial species were not. The sensitivity of RT-PCR was improved by adding yeast tRNA as a carrier to the crude RNA extract. The RT-PCR amplifying the 149-bp DNA fragment was the most sensitive for detecting E. coli O157:H7 and the most refractory to the bactericidal treatments. Heat treatment at $65^{\circ}C$ for 30 min was the least inhibitory of all bactericidal treatments. Treatment with RNase A strongly inhibited the RT-PCR of heated milk but not unheated milk. This study described RT-PCR methods that are specific and sensitive with a detection limit of 10 E. coli O157:H7 cells, and showed that pre-treating milk samples with RNase A improved the specificity to detect viable bacteria by RT-PCR.

ANALYSIS AND MANIPULATION OF CANDIDATE GENES FOR DIARRHEAL DISEASE VACCINE DEVELOPMENTS

  • Kim Young-Chang
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2000년도 International Meeting 2000
    • /
    • pp.58-65
    • /
    • 2000
  • Diarrheal diseases are a major cause of both illness and death in developing countries and are caused by rotavirus, Shigella spp., Salmonella spp., enterotoxigenic Escherichia coli (ETEC), and Vibrio spp. In this study, for the development of vaccine against diarrheal diseases caused by Shigella sonei, Salmonella typhimurium, E. coli O157, and Vibrio cholerae, cloning and nucleotide sequence analysis of genes and characteristics of their gene products in E. coli were performed. For construction of attenuated strain of S. sonnei KNIH104 and Salmonella typhimurium KNIH100, the aroA genes were cloned, respectively. The recombinant plasmid $_pJP{\Delta}A45$ containing aroA deleted region and suicide vector $(_pJP5603)$ was constructed. The aroA gene deleted mutants were constructed using this recombinant plasmid. For cloning gene encoding antigenic region of E. coli O157 KNIH317, the O-antigen synthesis gene cluster and sit gene was cloned. The E. coli XL1-Blue cells harboring this recombinant plasmid showed cytotoxicity in Vero cells. The ctx gene was cloned for tile purpose of antigenic region against V. cholerae KNIH002. Sequence analysis confirmed that the virulence gene cassette was consisted of ace, zot, ctxA and ctxB genes.

  • PDF