• 제목/요약/키워드: Error plot

검색결과 123건 처리시간 0.022초

MODIS NDVI와 강수량 자료를 이용한 북한의 벼 수량 추정 연구 (A Study on Estimating Rice Yield in DPRK Using MODIS NDVI and Rainfall Data)

  • 홍석영;나상일;이경도;김용석;백신철
    • 대한원격탐사학회지
    • /
    • 제31권5호
    • /
    • pp.441-448
    • /
    • 2015
  • 식량수급을 이해하기 위한 농업 현황 정보가 부족한 북한을 대상으로 위성영상과 기후자료를 이용하여 객관적이고 재현 가능한 벼 수량을 추정하는 방법을 개발하는 것을 본 연구의 목적으로 하였다. 2002년부터 2014년까지의 MODIS 위성 식생지수 평균 NDVI 최대값과 27개 관측지점의 9월 강수량 자료를 이용하여 북한의 벼 수량 값을 추정하였다. 모형의 결정계수는 0.44, RMSE는 0.27 ton/ha로 다소 크게 나타났고, 분산분석결과 F비가 3.0983, 유의확률이 0.1008을 보였다. 벼논 지역의 MODIS 평균 NDVI 최대값과 등숙기의 기후자료를 이용하여 추정한 북한의 벼 수량은 2007년이 2.71 ton/ha로 가장 낮게, 2006년이 3.54 ton/ha로 가장 높게 나타났다. 통계 값과 추정 값의 산점도를 통하여 비교한 결과 벼 수량이 약 3.3 ton/ha 보다 적을 때는 모형의 추정 값이 높고 그 이상일 때는 통계 값이 더 높게 나타나는 경향이었다. 모형의 종속변수와 독립변수로 사용되는 위성영상의 품질, 단일 시기의 벼논 마스크 영상, 기상 관측지점의 수와 자료의 품질, 통계 값의 품질 등으로 벼 수량에 대한 추정 성능의 한계가 있지만 객관적 자료를 사용하여 재현 가능한 방법을 제시하였다는 의미를 가진다. 모형 구동을 위해 사용되는 자료의 품질을 높여 나가야 하는 과제를 안고 있다.

MDCT 검출기의 x/y plane과 z축 분해능 팬텀 개발 및 유용성에 관한 연구 (A Study on the Development and usefulness of the x/y Plane and z Axis Resolution Phantom for MDCT Detector)

  • 김영균;한동균
    • 한국방사선학회논문지
    • /
    • 제16권1호
    • /
    • pp.67-75
    • /
    • 2022
  • 본 연구의 목적은 MDCT의 다양한 매개변수와 재구성 조건을 반영하고 z축과 x/y plane의 분해능을 동시에 평가할 수 있는 새로운 팬텀과 평가 방법을 정립하고 유용성을 파악하고자 한다. CT 장비는 Aquilion ONE(Cannon Medical System, Otawara, Japan)을 사용하였으며, 관전압 120 kV에 관전류는 260 mA, 그리고 재구성 영상은 D-FOV 300 mm2로 동일하게 설정하였다. 자체 제작한 SSP 측정 팬텀을 이용하여 고대조도 분해능과 절편두께 분해능을 평가하였다. 이때 갠트리 등각점부터의 거리와 재구성 알고리즘을 변화시켰다. 절편두께는 0.6 mm에서 10.0 mm까지 5단계로 재구성하였다. 영상의 분석은 Aquarius iNtuition Edition ver. 4.4.13.P6 software (Terarecon, California, USA)의 Profile tool을 이용하여 FWHM과 FWTM을 측정하였으며, ImageJ program(v1.53n, National Institutes of Health, USA)의 Plot profile tool을 사용하여 SPQI와 신호강도를 평가하였다. x/y plane의 고대조도 분해능을 평가한 결과, 갠트리 등각점에서 거리가 멀어질수록 2.5, 5.0, 10.0 mm의 절편두께에서 각각 4.09~11.99%, 4.12~35.52%, 4.70~37.64% 감소되었으며, 공칭 절편두께가 두꺼워질수록 감소폭이 증가되었다. 그리고 2.5, 5.0, 10.0 mm의 절편두께에서 High 알고리즘을 적용하면 고대조도 분해능이 각각 74.83, 15.18, 81.25% 증가되었다. x/y plane 및 z축의 절편두께 분해능을 평가한 결과, SSP 곡선에서 FWHM은 거의 일정하지만 사용자가 설정한 공칭 절편두께보다 모두 높게 측정되었다. 갠트리 등각점부터 거리가 멀어질수록 절편두께의 분해능이 감소되었다. 축방향 스캔이 나선형 방법보다 z축 FWHM과 FWTM이 더 증가되었다. 특히, 절편두께가 얇을수록 공칭 절편두께와 오차 범위가 증가되었다. 그리고 SPQI는 절편두께가 커질수록 증가되었으며 나선형 스캔이 축방향 스캔보다 90%에 가까워졌다. MDCT 장치의 성능을 평가할 수 있는 SSP 팬텀을 개발하여 x/y plane과 z축의 분해능을 비교 평가함으로서 노후 장비 관리와 화질 평가의 구체적인 방법으로 활용될 수 있으며, 진단 영상 분야에서 병변 감별에 큰 기여를 할 수 있을 것으로 기대한다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF