• Title/Summary/Keyword: Error localization

Search Result 498, Processing Time 0.026 seconds

Group based DV-Hop localization Algorithm in Wireless Sensor Network (그룹 기반의 DV-HoP 무선 센서네트워크 위치측정 알고리즘)

  • Kim, Hwa-Joong;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.65-75
    • /
    • 2009
  • In Wireless Sensor Network, the sensor node localization is important issue for information tracking, event detection, routing. Generally, in wireless sensor network localization, the absolute positions of certain anchor nodes are required based on the use of global positioning system, then all the other nodes are approximately localized using various algorithms based on a coordinate system of anchor DV-Hop is a localized, distributed, hop by hop positioning algorithm in wireless sensor network where only a limited fraction of nodes have self positioning capability. However, instead of uniformly distributed network, in anisotropic network with possible holes, DV-Hop's performance is very low. To address this issue, we propose Group based DV-Hop (GDV-Hop) algorithm. Best contribution of GDV-Hop is that it performs localization with reduced error compared with DV-Hop in anisotropic network.

Iris Localization using the Pupil Center Point based on Deep Learning in RGB Images (RGB 영상에서 딥러닝 기반 동공 중심점을 이용한 홍채 검출)

  • Lee, Tae-Gyun;Yoo, Jang-Hee
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.135-142
    • /
    • 2020
  • In this paper, we describe the iris localization method in RGB images. Most of the iris localization methods are developed for infrared images, thus an iris localization method in RGB images is required for various applications. The proposed method consists of four stages: i) detection of the candidate irises using circular Hough transform (CHT) from an input image, ii) detection of a pupil center based on deep learning, iii) determine the iris using the pupil center, and iv) correction of the iris region. The candidate irises are detected in the order of the number of intersections of the center point candidates after generating the Hough space, and the iris in the candidates is determined based on the detected pupil center. Also, the error due to distortion of the iris shape is corrected by finding a new boundary point based on the detected iris center. In experiments, the proposed method has an improved accuracy about 27.4% compared to the CHT method.

3-D Near Field Localization Using Linear Sensor Array in Multipath Environment with Inhomogeneous Sound Speed (비균일 음속 다중경로환경에서 선배열 센서를 이용한 근거리 표적의 3차원 위치추정 기법)

  • Lee Su-Hyoung;Choi Byung-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2006
  • Recently, Lee et al. have proposed an algorithm utilizing the signals from different paths by using bottom mounted simple linear array to estimate 3-D location of oceanic target. But this algorithm assumes that sound velocity is constant along depth of sea. Consequently, serious performance loss is appeared in real oceanic environment that sound speed is changed variously. In this paper, we present a 3-D near field localization algorithm for inhomogeneous sound speed. The proposed algorithm adopt localization function that utilize ray propagation model for multipath environment with linear sound speed profile(SSP), after that, the proposed algorithm searches for the instantaneous azimuth angle, range and depth from the localization cost function. Several simulations using linear SSP and non linear SSP similar to that of real oceans are used to demonstrate the performance of the proposed algorithm. The estimation error in range and depth is decreased by 100m and 50m respectively.

An Indoor Localization Algorithm of UWB and INS Fusion based on Hypothesis Testing

  • Long Cheng;Yuanyuan Shi;Chen Cui;Yuqing Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1317-1340
    • /
    • 2024
  • With the rapid development of information technology, people's demands on precise indoor positioning are increasing. Wireless sensor network, as the most commonly used indoor positioning sensor, performs a vital part for precise indoor positioning. However, in indoor positioning, obstacles and other uncontrollable factors make the localization precision not very accurate. Ultra-wide band (UWB) can achieve high precision centimeter-level positioning capability. Inertial navigation system (INS), which is a totally independent system of guidance, has high positioning accuracy. The combination of UWB and INS can not only decrease the impact of non-line-of-sight (NLOS) on localization, but also solve the accumulated error problem of inertial navigation system. In the paper, a fused UWB and INS positioning method is presented. The UWB data is firstly clustered using the Fuzzy C-means (FCM). And the Z hypothesis testing is proposed to determine whether there is a NLOS distance on a link where a beacon node is located. If there is, then the beacon node is removed, and conversely used to localize the mobile node using Least Squares localization. When the number of remaining beacon nodes is less than three, a robust extended Kalman filter with M-estimation would be utilized for localizing mobile nodes. The UWB is merged with the INS data by using the extended Kalman filter to acquire the final location estimate. Simulation and experimental results indicate that the proposed method has superior localization precision in comparison with the current algorithms.

Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design (SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석)

  • Park, Chan-Ill;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.49-59
    • /
    • 2008
  • SIFT(Scale Invariant Feature Transform) is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vortices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3-D image constructions, and its most computation-intensive stage is a keypoint localization. In this paper, we develope a fixed-point model of the keypoint localization and propose its efficient hardware architecture for embedded applications. The bit-length of key variables are determined based on two performance measures: localization accuracy and error rate. Comparing with the original algorithm (implemented in Matlab), the accuracy and error rate of the proposed fixed point model are 93.57% and 2.72% respectively. In addition, we found that most of missing keypoints appeared at the edges of an object which are not very important in the case of keypoints matching. We estimate that the hardware implementation will give processing speed of $10{\sim}15\;frame/sec$, while its fixed point implementation on Pentium Core2Duo (2.13 GHz) and ARM9 (400 MHz) takes 10 seconds and one hour each to process a frame.

Target Localization Method based on Extended Kalman Filter using Multipath Time Difference of Arrival (다중경로 도달시간차이를 이용한 확장칼만필터 기반의 표적 위치추정 기법)

  • Cho, Hyeon-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.251-257
    • /
    • 2021
  • An underwater platform operating a passive sonar needs to acquire the target position to perform its mission. In an environment where sea-floor reflections exist, the position of a target can be estimated using the difference in the arrival time between the signals received through multipaths. In this paper, a method of localization for passive sonar is introduced, based on the EKF (Extended Kalman Filter) using the multipath time difference of arrival in underwater environments. TMA (Target Motion Analysis) requires accumulated measurements for long periods and has limitations on own-ship movement, allowing it to be used only in certain situations. The proposed method uses an EKF, which takes measurements of the time differences of the signal arrival in multipath environments. The method allows for target localization without restrictions on own-ship movement or the need for an observation time. To analyze the performance of the proposed method, simulation according to the distance and depth of the target was performed repeatedly, and the localization error according to the distance and water depth were analyzed. In addition, the correlation with the estimated position error was assessed by analyzing the arrival time difference according to the water depth.

A Study on 3-Dimensional Near-Field Source Localization Using Interference Pattern Matching in Shallow Water Environments (천해에서 간섭패턴 정합을 이용한 근거리 음원의 3차원 위치추정 기법연구)

  • Kim, Se-Young;Chun, Seung-Yong;Son, Yoon-Jun;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2009
  • In this paper, we propose a 3-D geometric localization method for near-field broadband source in shallow water environments. According to the waveguide invariant theory, slope of the interference pattern which is seen in a sensor spectrogram directly proportional to a range of the source. The relative ratio of the range between source and sensors was estimated by matching of two interference patterns in spectrogram. Then this ratio is applied to the Apollonius's circle which shows the locus of a source whose range ratio from two sensors is constant. Two Apollonius's circles from three sensors make the intersection point that means the horizontal range and the azimuth angle of the source. And this intersection point is constant with source depth. Therefore the source depth can be estimated using 3-D hyperboloid equation whose range difference from two sensors is constant. To evaluate a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program and analysis of localization error is demonstrated. From simulation results, error estimate for range and depth is described within 50 m and 15 m respectively.

Low energy ultrasonic single beacon localization for testing of scaled model vehicle

  • Dubey, Awanish C.;Subramanian, V. Anantha;Kumar, V. Jagadeesh
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.391-407
    • /
    • 2019
  • Tracking the location (position) of a surface or underwater marine vehicle is important as part of guidance and navigation. While the Global Positioning System (GPS) works well in an open sea environment but its use is limited whenever testing scaled-down models of such vehicles in the laboratory environment. This paper presents the design, development and implementation of a low energy ultrasonic augmented single beacon-based localization technique suitable for such requirements. The strategy consists of applying Extended Kalman Filter (EKF) to achieve location tracking from basic dynamic distance measurements of the moving model from a fixed beacon, while on-board motion sensor measures heading angle and velocity. Iterative application of the Extended Kalman Filter yields x and y co-ordinate positions of the moving model. Tests performed on a free-running ship model in a wave basin facility of dimension 30 m by 30 m by 3 m water depth validate the proposed model. The test results show quick convergence with an error of few centimeters in the estimated position of the ship model. The proposed technique has application in the real field scenario by replacing the ultrasonic sensor with industrial grade long range acoustic modem. As compared with the existing systems such as LBL, SBL, USBL and others localization techniques, the proposed technique can save deployment cost and also cut the cost on number of acoustic modems involved.

The effect of model parameters on single dipole source tracing in EEG (모델 변수가 EEG의 Single Dipole Source 추정에 끼치는 영향에 관한 연구)

  • 박기범;박인호;김동우;배병훈;김수용;박찬영;김신태
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.41-53
    • /
    • 1994
  • The accurate localization of electrical sources in the brain is one of the most important questions in EEG, especially in the analysis of evoked responses and of epileptiform spike activity. A detailed simulation study of single dipole source estimation based on EEG is given in this paper. The effects of dipole model parameters on single dipole source tracing in EEG are examined in some detail using the Monte Carlo simulation. The error of source localization is found to be greatly influenced by how the electrodes are distributed over the head and the number of them.

  • PDF

Sound Source Localization Method Applied to Robot System (로봇 시스템에 적용될 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.28-32
    • /
    • 2007
  • While various methods for sound source localization have been developed, most of them utilize on the time difference of arrival (TDOA) between microphones or the measured head related transfer functions (HRTF). In case of a real robot implementation, the former has a merit of light computation load to estimate the sound direction but can not consider the effect of platform on TDOAs, while the latter can, because characteristics of robot platform are included in HRTF. However, the latter needs large resources for the HRTF database of a specific robot platform. We propose the compensation method which has the light computation load while the effect of platform on TDOA can be taken into account. The proposed method is used with spherical head related transfer function (SHRTF) on the assumption that robot platform, for example a robot head, installed microphones can be modeled to a sphere. We verify that the proposed method decreases the estimation error caused by the robot platform through the simulation and experiment in real environment.

  • PDF