In this study, the Artificial Neural Network (ANN) was used to mapping air temperature in Seoul. MODerate resolution Imaging Spectroradiomter (MODIS) data was used as auxiliary data for mapping. For the ANN network topology optimizing, scatterplots and statistical analysis were conducted, and input-data was classified and combined that highly correlated data which surface temperature, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), time (satellite observation time, Day of year), location (latitude, hardness), and data quality (cloudness). When machine learning was conducted only with data with a high correlation with air temperature, the average values of correlation coefficient (r) and Root Mean Squared Error (RMSE) were 0.967 and 2.708℃. In addition, the performance improved as other data were added, and when all data were utilized the average values of r and RMSE were 0.9840 and 1.883℃, which showed the best performance. In the Seoul air temperature map by the ANN model, the air temperature was appropriately calculated for each pixels topographic characteristics, and it will be possible to analyze the air temperature distribution in city-level and national-level by expanding research areas and diversifying satellite data.
In this study, we investigated the effects of the spectral fitting window and absorption cross-section on the retrieval of the formaldehyde (HCHO) slant column density (SCD) from the direct-sun measurement of pandora spectrometer system using differential optical absorption spectroscopy (DOAS). Pandora Level 1 data observed at Yonsei University in Seoul from October 12 to 31, 2022 were used. The HCHO column density was retrieved under eight ranges including the spectral fitting window used in the Second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) and seven types of absorption cross-section composition. The spectral fitting window was selected from 336.5 to 359.0 nm with minimum residual and HCHO SCD error. When the nitrogen dioxide (NO2) absorption cross-section at 220 K was added to the cross-section composition used in the CINDI-2 campaign among seven types, the residual and HCHO SCD error were the smallest and the HCHO column density wasstably retrieved. The average HCHO SCD with the highest retrieval accuracy and the values retrieved under other conditions differed from a minimum of 4% to a maximum of 40%.
Korean Journal of Agricultural and Forest Meteorology
/
v.25
no.3
/
pp.182-196
/
2023
Accurate and timely estimation of crop yields is crucial for various purposes, including global food security planning and agricultural policy development. Remote sensing techniques, particularly using vegetation indices (VIs), have show n promise in monitoring and predicting crop conditions. However, traditional VIs such as the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) have limitations in capturing rapid changes in vegetation photosynthesis and may not accurately represent crop productivity. An alternative vegetation index, the near-infrared reflectance of vegetation (NIRv), has been proposed as a better predictor of crop yield due to its strong correlation with gross primary productivity (GPP) and its ability to untangle confounding effects in canopies. In this study, we investigated the potential of NIRv in estimating crop yield, specifically for corn and soybean crops in major crop-producing regions in 14 states of the United States. Our results demonstrated a significant correlation between the peak value of NIRv and crop yield/area for both corn and soybean. The correlation w as slightly stronger for soybean than for corn. Moreover, most of the target states exhibited a notable relationship between NIRv peak and yield, with consistent slopes across different states. Furthermore, we observed a distinct pattern in the yearly data, where most values were closely clustered together. However, the year 2012 stood out as an outlier in several states, suggesting unique crop conditions during that period. Based on the established relationships between NIRv peak and yield, we predicted crop yield data for 2022 and evaluated the accuracy of the predictions using the Root Mean Square Percentage Error (RMSPE). Our findings indicate the potential of NIRv peak in estimating crop yield at the county level, with varying accuracy across different counties.
Cheol-Gu Park;Sang-Ki Choi;Seong-Geun Jo;Kwon-Min Kim
Journal of Digital Convergence
/
v.21
no.3
/
pp.33-39
/
2023
This study is a performance evaluation of a blood sugar monitoring system that combines a PPG sensor, which is an evaluation device for blood glucose monitoring, and a DNN algorithm when monitoring capillary blood glucose. The study is a researcher-led clinical trial conducted on participants from September 2023 to November 2023. PPG-BGMS compared predicted blood sugar levels for evaluation using 1-minute heart rate and heart rate variability information and the DNN prediction algorithm with capillary blood glucose levels measured with a blood glucose meter of the standard personal blood sugar management system. Of the 100 participants, 50 had type 2 diabetes (T2DM), and the average age was 67 years (range, 28 to 89 years). It was found that 100% of the predicted blood sugar level of PPG-BGMS was distributed in the A+B area of the Clarke error grid and Parker(Consensus) error grid. The MARD value of PPG-BGMS predicted blood glucose is 5.3 ± 4.0%. Consequentially, the non-blood-based PPG-BGMS was found to be non-inferior to the instantaneous blood sugar level of the clinical standard blood-based personal blood glucose measurement system.
Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.
Park, Dong-Wook;Paik, Nam-Won;Choi, Byung-Soon;Kim, Tae-Gyun;Lee, Kwang-Yong;Oh, Se-Min;Ahn, Kyu-Dong
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.6
no.1
/
pp.88-96
/
1996
This study was conducted to establish model between lead and ZPP concentration in blood of workers exposed to lead. Workers employed in secondary smelting manufacturing industry showed $85.1{\mu}g/dl$ of blood lead level, exceeding $60{\mu}g/dl$, the Criteria for Removal defined by Occupational Safety and Health Act of Korea. Average blood lead level of workers in the battery manufacturing industry was $51.3{\mu}g/dl$, locating between $40{\mu}g/dl$ and $60{\mu}g/dl$, the Criteria for Requiring Medical Removal. Blood lead level of in the litharge and radiator manufacturing industry was below $40{\mu}g/dl$, the Criteria Requiring Temporary Medical Removal. Blood lead levels of workers by industry were Significantly different(p<0.05). 50(21 %) showed blood lead levels above $60{\mu}g/dl$, the Criteria for Removal and 66(27.7 %) showed blood lead levels between the Criteria for Requiring Medical Removal, $40-60{\mu}g/dl$. Thus, approximately 50 percent of workers indicated blood lead levels above $40{\mu}g/dl$, the Criteria Requiring Temporary Medical Removal and should receive medical examination and consultation including biological monitoring. Average ZPP level of workers employed in the secondary smelting industry was $186.2{\mu}g/dl$, exceeding above $150{\mu}g/dl$, the Criteria for Removal. Seventy seven of all workers(32.3 %) showed ZPP level above $100-150{\mu}g/dl$, the Criteria for Requiring Medical Removal. The most appropriate model for predicting ZPP in blood was log-linear regression model. Log linear regression models between lead and ZPP concentrations in blood was Log ZPP(${\mu}g/dl$) = -0.2340 + 1.2270 Log Pb-B(${\mu}g/dl$)(standard error of estimate: 0,089, ${\gamma}^2=0.4456$, n=238, P=0.0001), Blood-in-lead explained 44.56 % of the variance in log(ZPP in blood).
Journal of Korean Society of Environmental Engineers
/
v.28
no.2
/
pp.223-228
/
2006
High-performance liquid chromatography(HPLC) and fluorescence derivatization were applied for a trace-level N-nitrosodimethylamine(NDMA) analysis of water samples. Fluorescence intensity was optimized with the excitation wavelength of 340 nm and the emission wavelength of 530 nm. pH adjustment after denitrosation was necessary to get a maximum intensity at pH between 9 and 12. Maximum intensity was found with a dansyl chloride concentration of 330 to 500 mg/L. Percentile error in the water sample analyses through solid phase extraction was 12-162% and 6-23% for the lower concentration level(10-200 ng/L NDMA) and the higher level(100-1000 ng/L NDMA), respectively, showing more discrepancy in lower level. However, the average ratios of estimated NDMA to the standard NDMA were close to 1 for both concentration ranges, presenting this HPLC method could detect from tens to hundreds nanograms NDMA per liter. Accurate determination of NDMA, which was injected to a wastewater effluent, revealed the selectivity of fluorescence derivatization for the target compound(NDMA) in the presence of complex interfering compounds. The HPLC with fluorescence derivatization may be applicable for determining NDMA of water and wastewater samples fur various research purposes.
Though digital imaging devices such as smart phones, digital cameras and office scanners have improved significantly over the past years, they are seldom used for industrial application. This may be attributable to high level of quality and performance requirement for industrial application, but there lacks a test or an objective evaluation whether the upgraded performance of entry-level device is sufficiently enough to replace existing industrial equipments or not. If there exists an industrial application area where the applicability of entry-level equipment is proved by some objective tests, then companies will be able to reduce investment on expensive industrial equipment. In this study, applicability of entry-level digital devices for color difference discrimination of PVC (Polyvinyl chloride) color sheet is tested. By testing smart phone, digital camera, and office scanner for color difference discrimination, authors have found that office scanner shows consistent result with less measurement error. Additional experiment on comparing office scanner with industrial spectrophotometer has confirmed that there exists high correlation between the two devices' results. Based on this result, office scanner may be applicable to discriminate the color difference of PVC sheet instead of expensive industrial spectrophotometer if proper management criteria are established.
The underflow type movable weirs were arranged in a multi-stage way along a reach at the Chiseong River, where flooding has been observed frequently. With management water level of the movable weirs the control effects of storage and flood were suggested and the control effects were compared with those of existed weir system. The water level for the targeted storage and flood elevation was suggested by building the artificial neural network model. When the underflow type of movable weirs were arranged in a multi-stage way, the peak flood elevation decreased by 68.28% in the downstream compared with the existed weir system, and the total storage of the target section of multi-stage movable weirs increased by 216%. As a result of numerical simulation to build the artificial neural network model, 60%, 20%, and 20% among 216 data were used for the training, validation, and test, respectively. The training result of mean square error was $0.1681m^2$ and the high coefficients of determination were 0.9961, 0.9967, and 0.9943 in the training, validation, and test, respectively. As a result the water level management of each movable weir for the controls of flood elevation in the targeted downstream and targeted storage was suggested by using the artificial neural network.
In many continuous speech recognition systems based on HMMs, decision tree-based state tying has been used for not only improving the robustness and accuracy of context dependent acoustic modeling but also synthesizing unseen models. To construct the phonetic decision tree, standard method performs one-level pruning using just single Gaussian triphone models. In this paper, two novel approaches, two-level decision tree and multi-mixture decision tree, are proposed to get better performance through more accurate acoustic modeling. Two-level decision tree performs two level pruning for the state tying and the mixture weight tying. Using the second level, the tied states can have different mixture weights based on the similarities in their phonetic contexts. In the second approach, phonetic decision tree continues to be updated with training sequence, mixture splitting and re-estimation. Multi-mixture Gaussian as well as single Gaussian models are used to construct the multi-mixture decision tree. Continuous speech recognition experiment using these approaches on BN-96 and WSJ5k data showed a reduction in word error rate comparing to the standard decision tree based system given similar number of tied states.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.