• Title/Summary/Keyword: Error correcting output coding(ECOC)

Search Result 4, Processing Time 0.02 seconds

Comparison of Various Criteria for Designing ECOC

  • Seok, Kyeong-Ha;Lee, Seung-Chul;Jeon, Gab-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.437-447
    • /
    • 2006
  • Error Correcting Output Coding(ECOC) is used to solve multi-class problem. It is known that it improves the classification accuracy. In this paper, we compared various criteria to design code matrix while encoding. In addition. we prorpose an ensemble which uses the ability of each classifier while decoding. We investigate the justification of the proposed method through real data and synthetic data.

  • PDF

Comparison Study of Multi-class Classification Methods

  • Bae, Wha-Soo;Jeon, Gab-Dong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.377-388
    • /
    • 2007
  • As one of multi-class classification methods, ECOC (Error Correcting Output Coding) method is known to have low classification error rate. This paper aims at suggesting effective multi-class classification method (1) by comparing various encoding methods and decoding methods in ECOC method and (2) by comparing ECOC method and direct classification method. Both SVM (Support Vector Machine) and logistic regression model were used as binary classifiers in comparison.

Solving Multi-class Problem using Support Vector Machines (Support Vector Machines을 이용한 다중 클래스 문제 해결)

  • Ko, Jae-Pil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1260-1270
    • /
    • 2005
  • Support Vector Machines (SVM) is well known for a representative learner as one of the kernel methods. SVM which is based on the statistical learning theory shows good generalization performance and has been applied to various pattern recognition problems. However, SVM is basically to deal with a two-class classification problem, so we cannot solve directly a multi-class problem with a binary SVM. One-Per-Class (OPC) and All-Pairs have been applied to solve the face recognition problem, which is one of the multi-class problems, with SVM. The two methods above are ones of the output coding methods, a general approach for solving multi-class problem with multiple binary classifiers, which decomposes a complex multi-class problem into a set of binary problems and then reconstructs the outputs of binary classifiers for each binary problem. In this paper, we introduce the output coding methods as an approach for extending binary SVM to multi-class SVM and propose new output coding schemes based on the Error-Correcting Output Codes (ECOC) which is a dominant theoretical foundation of the output coding methods. From the experiment on the face recognition, we give empirical results on the properties of output coding methods including our proposed ones.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.