• 제목/요약/키워드: Error Sources

검색결과 611건 처리시간 0.031초

Dual-wavelength Digital Holography Microscope for BGA Measurement Using Partial Coherence Sources

  • Cho, Hyung-Jun;Kim, Doo-Cheol;Yu, Young-Hun;Jung, Won-Ki;Shin, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.352-356
    • /
    • 2011
  • Dual-wavelength holography has a better axial range than single-wavelength holography, allowing unambiguous phase imaging. Partial coherence sources reduce coherent noise, resulting in improved reconstructed images. We measured a ball-grid array using dual-wavelength holography with partial coherence sources. This holography method is useful for measurement samples that exhibit coherence noise and have a step height larger than the single wavelength used in holography.

The effect of error sources on the results of one-way nested ocean regional circulation model

  • Sy, Pham-Van;Hwang, Jin Hwan;Nguyen, Thi Hoang Thao;Kim, Bo-ram
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.253-253
    • /
    • 2015
  • This research evaluated the effect of two main sources on the results of the ocean regional circulation model (ORCMs) during downscaling and nesting the results from the coarse data. The two sources should be the domain size, and temporal and spatial resolution different between driving and driven data. The Big-Brother Experiment is applied to examine the impact of them on the results of the ORCMs separately. Within resolution of 3km grid point ORCMs applying in the Big-Brother Experiment framework, it showed that the simulation results of the ORCMs depend on the domain size and specially the spatial and temporal resolution of lateral boundary conditions (LBCs). The domain size can be selected at 9.5 times larger than the interest area, and the spatial resolution between driving data and driven model can be up to 3 of ratio resolution and updating frequency of the LBCs can be up to every 6 hours per day.

  • PDF

Maximum Canopy Height Estimation Using ICESat GLAS Laser Altimetry

  • Park, Tae-Jin;Lee, Woo-Kyun;Lee, Jong-Yeol;Hayashi, Masato;Tang, Yanhong;Kwak, Doo-Ahn;Kwak, Han-Bin;Kim, Moon-Il;Cui, Guishan;Nam, Ki-Jun
    • 대한원격탐사학회지
    • /
    • 제28권3호
    • /
    • pp.307-318
    • /
    • 2012
  • To understand forest structures, the Geoscience Laser Altimeter System (GLAS) instrument have been employed to measure and monitor forest canopy with feasibility of acquiring three dimensional canopy structure information. This study tried to examine the potential of GLAS dataset in measuring forest canopy structures, particularly maximum canopy height estimation. To estimate maximum canopy height using feasible GLAS dataset, we simply used difference between signal start and ground peak derived from Gaussian decomposition method. After estimation procedure, maximum canopy height was derived from airborne Light Detection and Ranging (LiDAR) data and it was applied to evaluate the accuracy of that of GLAS estimation. In addition, several influences, such as topographical and biophysical factors, were analyzed and discussed to explain error sources of direct maximum canopy height estimation using GLAS data. In the result of estimation using direct method, a root mean square error (RMSE) was estimated at 8.15 m. The estimation tended to be overestimated when comparing to derivations of airborne LiDAR. According to the result of error occurrences analysis, we need to consider these error sources, particularly terrain slope within GLAS footprint, and to apply statistical regression approach based on various parameters from a Gaussian decomposition for accurate and reliable maximum canopy height estimation.

분산된 센서들의 Registration 오차를 줄이기 위한 새로운 필터링 방법 (New Filtering Method for Reducing Registration Error of Distributed Sensors)

  • 김용식;이재훈;도현민;김봉근;타니카와 타미오;오바 코타로;이강;윤석헌
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.176-185
    • /
    • 2008
  • In this paper, new filtering method for sensor registration is provided to estimate and correct error of registration parameters in multiple sensor environments. Sensor registration is based on filtering method to estimate registration parameters in multiple sensor environments. Accuracy of sensor registration can increase performance of data fusion method selected. Due to various error sources, the sensor registration has registration errors recognized as multiple objects even though multiple sensors are tracking one object. In order to estimate the error parameter, new nonlinear information filtering method is developed using minimum mean square error estimation. Instead of linearization of nonlinear function like an extended Kalman filter, information estimation through unscented prediction is used. The proposed method enables to reduce estimation error without a computation of the Jacobian matrix in case that measurement dimension is large. A computer simulation is carried out to evaluate the proposed filtering method with an extended Kalman filter.

  • PDF

RLG Trapping 신호처리 기법의 성능개선에 관한 연구 (A study on the Performance Improvement in Trapping Signal Processing Method of RLG)

  • 유기정;김천중;심규민
    • 한국항공우주학회지
    • /
    • 제36권10호
    • /
    • pp.1003-1010
    • /
    • 2008
  • 본 논문은 RLG의 신호처리 기법인 Trapping 기법 적용시 각속도와 가속도의 측정시점 불일치에 의해 발생되는 오차를 보상하는 기법에 관한 연구이다. RLG의 대표적인 신호처리 기법인 Stripping 신호처리 기법과 Trapping 신호처리 기법에 대하여 각 기법의 오차요인을 분석하고 이에 대한 모델링을 수행하였다. 그리고 Trapping 기법 적용시 각속도와 가속도 측정시점 불일치에 의해 발생되는 오차에 대한 모델링을 통하여 항법오차에 미치는 영향을 분석하였으며 이를 감소시키기 위한 새로운 신호처리 기법을 제안하고 시뮬레이션 및 시험을 통하여 이에 대한 성능분석 결과를 제시하였다. 성능 분석결과 본 논문에서 제시한 신호처리 기법이 기존의 방법에 비하여 항법오차를 크게 감소시키는 것을 확인할 수 있었다.

Geolocation Error Analysis of KOMPSAT-5 SAR Imagery Using Monte-Carlo Simulation Method

  • Choi, Yoon Jo;Hong, Seung Hwan;Sohn, Hong Gyoo
    • 한국측량학회지
    • /
    • 제37권2호
    • /
    • pp.71-79
    • /
    • 2019
  • Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.

Autonomous exploration for radioactive sources localization based on radiation field reconstruction

  • Xulin Hu;Junling Wang;Jianwen Huo;Ying Zhou;Yunlei Guo;Li Hu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1153-1164
    • /
    • 2024
  • In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.

Adaptive group of ink drop spread: a computer code to unfold neutron noise sources in reactor cores

  • Hosseini, Seyed Abolfazl;Afrakoti, Iman Esmaili Paeen
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1369-1378
    • /
    • 2017
  • The present paper reports the development of a computational code based on the Adaptive Group of Ink Drop Spread (AGIDS) for reconstruction of the neutron noise sources in reactor cores. AGIDS algorithm was developed as a fuzzy inference system based on the active learning method. The main idea of the active learning method is to break a multiple input-single output system into a single input-single output system. This leads to the ability to simulate a large system with high accuracy. In the present study, vibrating absorber-type neutron noise source in an International Atomic Energy Agency-two dimensional reactor core is considered in neutron noise calculation. The neutron noise distribution in the detectors was calculated using the Galerkin finite element method. Linear approximation of the shape function in each triangle element was used in the Galerkin finite element method. Both the real and imaginary parts of the calculated neutron distribution of the detectors were considered input data in the developed computational code based on AGIDS. The output of the computational code is the strength, frequency, and position (X and Y coordinates) of the neutron noise sources. The calculated fraction of variance unexplained error for output parameters including strength, frequency, and X and Y coordinates of the considered neutron noise sources were $0.002682{\sharp}/cm^3s$, 0.002682 Hz, and 0.004254 cm and 0.006140 cm, respectively.