• Title/Summary/Keyword: Error Source

Search Result 1,250, Processing Time 0.026 seconds

Influence of the Hole Eccentricity in Residual Stresses Measurement by the Hole-drilling Method (구멍뚫기법에 의한 잔류응력 측정시 구멍 편심의 영향)

  • Kim, Cheol;Seok, Chang-Seong;Yang, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2059-2064
    • /
    • 2000
  • The measurement of residual stresses by the hole-drilling method has been commonly used to evaluate residual stresses in structural members. In this method, one of the source of error is due to the misalignment between the drilling hole and strain gage center. This paper presents a finite element analysis of the influence of such misalignment for the uniaxial residual stress field. The stress error increases proportionally to hole eccentricity. The correction equations which easily obtain the residual stress taking account of the hole eccentricity are derived. The stress error due to the hole eccentricity decreases by approximately one percent using this equations.

Color gamut mapping using fictive 3-D CIELAB equidistance sample (가상의 3차원 CIELAB 등거리 색표본을 이용한 색역사상)

  • 오현수;곽한봉;이철희;서봉우;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.2
    • /
    • pp.58-67
    • /
    • 2001
  • Gamut mapping is a technique that acts on cross-media color reproduction to transform a color between devices for the purpose of enhancing the appearance or preserving the appearance of an image. Gamut mapping essentially produces color conversion error which depends the gamut mapping method, source and destination devices, and sample points for gamut modeling. For color space conversion between monitor colors and printer colors, empirical representation using sample measurements is currently widely utilized. Color samples are uniformly selected in the device space such as CMY or RGB, represented as color patches, and then measured. However, in the case of printer, these color samples are not evenly distributed inside the printer gamut and the color conversion error is increased. Accordingly, this paper introduces a equally distributed color sampling method in CIELAB space, a device- independent color space, to reduce color conversion error, and the performance is analyzed via color space conversion experiments using tetrahedral interpolation.

  • PDF

The Tip-Tilt Correction System in AO System for Small Telescope

  • Yu, Hyungjun;Park, Yong-Sun;Lee, Bangweon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.219.2-219.2
    • /
    • 2012
  • We are developing Adaptive Optics (AO) system for 24 inch telescope at Seoul National University Observatory. It consists of the tip-tilt correction system and the residual wavefront error correction system with a deformable mirror and a wavefront sensor. We present the construction and performance measurements of the tip-tilt correction system. The tip-tilt component is the single largest contributor to wavefront error, especially for small telescope. The tip-tilt correction system consists of a quadrant photodiode, a tip-tilt mirror and a feed back loop. The collimated He-Ne laser beam is used for input light source and is artificially disturbed by air turbulence generated by a heat gun. Most of the turbulence is of low frequency less than 20 Hz, but extends to a few hundreds Hz. It is found that the closed loop system using proportional-integral-derivative (PID) control successfully corrects tip-tilt error at a rate as high as 300~400 Hz.

  • PDF

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

A study on the design of Carbon Dioxide Measurement System using Infrared sensor and PID temperature control (PID 온도 제어 및 적외선 센서를 이용한 이산화탄소 측정 시스템 설계에 관한 연구)

  • Lim, Hyung-Taek;Beack, Seung-Hwa;Joo, Kwan-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.259-264
    • /
    • 1999
  • The $CO_2$ measuring system using infrared sensor has the variance according to the temperature change. Therefore, the temperature compensation should be needed to obtain a reliable measurement. In this study, the sensor module consist of infrared $CO_2$ Sensor, IR Source, pipe and the heater and measuring system has amplifier, A/D converter and microprocessor. And we suggest a method to reduce the error by using the PID temperature control. We use optimum parameters setting of Ziegler & Nichols as well as PID temperature control algorithm for the temperature compensation. In this method, PID optimum parameter is set from dummy time(L) and maximum slope(R). As a result of using this PID temperature control, it is founded that it has the fast response and low steady state error. Therefore, it is certainly proved that this is very suitable algorithm to correct the error on measurement.

  • PDF

Torque Ripple Reduction in Synchronous Motor Systems Driven by an Inverter (인버터로 구동되는 동기전동기 시스템에서의 토크리플 저감)

  • Won, Euy-Youn;Lee, Dong-Keun;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.247-250
    • /
    • 1995
  • This paper proposes a new method to reduce the torque ripple in vector controlled inverter fed synchronous motor systems. In three phase voltage source inverter systems, all the three line currents are generally not measured and the currents of two lines are measured through two sensors and two A/D converters. The measured currents may contain some error due to the non-ideality of the current sensors and A/D converters, and the error coefficient of two line currents are not same. As a result, the developed torque contains the torque ripple. The proposed method can eliminate the torque ripple by setting the error coefficient to same value. To verify the proposed method, digital simulations are carried out.

  • PDF

Explaining the Translation Error Factors of Machine Translation Services Using Self-Attention Visualization (Self-Attention 시각화를 사용한 기계번역 서비스의 번역 오류 요인 설명)

  • Zhang, Chenglong;Ahn, Hyunchul
    • Journal of Information Technology Services
    • /
    • v.21 no.2
    • /
    • pp.85-95
    • /
    • 2022
  • This study analyzed the translation error factors of machine translation services such as Naver Papago and Google Translate through Self-Attention path visualization. Self-Attention is a key method of the Transformer and BERT NLP models and recently widely used in machine translation. We propose a method to explain translation error factors of machine translation algorithms by comparison the Self-Attention paths between ST(source text) and ST'(transformed ST) of which meaning is not changed, but the translation output is more accurate. Through this method, it is possible to gain explainability to analyze a machine translation algorithm's inside process, which is invisible like a black box. In our experiment, it was possible to explore the factors that caused translation errors by analyzing the difference in key word's attention path. The study used the XLM-RoBERTa multilingual NLP model provided by exBERT for Self-Attention visualization, and it was applied to two examples of Korean-Chinese and Korean-English translations.

Review on the divergence form for bed slope source term and correction of the volume/free-surface relationship (발산형 바닥 경사 생성항의 재검토와 체적-수위 관계의 수정)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.289-302
    • /
    • 2017
  • DFB (Divergence Form for Bed slope source term) was rigorously derived and the error of mDFB using mean water depth at the cell face in DFB was clearly demonstrated. In addition, DFB technique turned out to be an exact method to the bed slope source term. The existing volume/free-surface relationship to the PSC (Partially Submerged Cell) has been corrected. It was discussed that treatment for the partially submerged edge is required to satisfy the C-property in PSC. It is expected that this study will provides a more accurate means in analyzing the shallow water equations with the approximate Riemann solver.

Optimizing the Joint Source/Network Coding for Video Streaming over Multi-hop Wireless Networks

  • Cui, Huali;Qian, Depei;Zhang, Xingjun;You, Ilsun;Dong, Xiaoshe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.800-818
    • /
    • 2013
  • Supporting video streaming over multi-hop wireless networks is particularly challenging due to the time-varying and error-prone characteristics of the wireless channel. In this paper, we propose a joint optimization scheme for video streaming over multi-hop wireless networks. Our coding scheme, called Joint Source/Network Coding (JSNC), combines source coding and network coding to maximize the video quality under the limited wireless resources and coding constraints. JSNC segments the streaming data into generations at the source node and exploits the intra-session coding on both the source and the intermediate nodes. The size of the generation and the level of redundancy influence the streaming performance significantly and need to be determined carefully. We formulate the problem as an optimization problem with the objective of minimizing the end-to-end distortion by jointly considering the generation size and the coding redundancy. The simulation results demonstrate that, with the appropriate generation size and coding redundancy, the JSNC scheme can achieve an optimal performance for video streaming over multi-hop wireless networks.

A DSP Implementation of Subband Sound Localization System

  • Park, Kyusik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4E
    • /
    • pp.52-60
    • /
    • 2001
  • This paper describes real time implementation of subband sound localization system on a floating-point DSP TI TMS320C31. The system determines two dimensional location of an active speaker in a closed room environment with real noise presents. The system consists of an two microphone array connected to TI DSP hosted by PC. The implemented sound localization algorithm is Subband CPSP which is an improved version of traditional CPSP (Cross-Power Spectrum Phase) method. The algorithm first split the input speech signal into arbitrary number of subband using subband filter banks and calculate the CPSP in each subband. It then averages out the CPSP results on each subband and compute a source location estimate. The proposed algorithm has an advantage over CPSP such that it minimize the overall estimation error in source location by limiting the specific band dominant noise to that subband. As a result, it makes possible to set up a robust real time sound localization system. For real time simulation, the input speech is captured using two microphone and digitized by the DSP at sampling rate 8192 hz, 16 bit/sample. The source location is then estimated at once per second to satisfy real-time computational constraints. The performance of the proposed system is confirmed by several real time simulation of the speech at a distance of 1m, 2m, 3m with various speech source locations and it shows over 5% accuracy improvement for the source location estimation.

  • PDF