• 제목/요약/키워드: Error Reduction

검색결과 1,415건 처리시간 0.03초

노천굴착에서 발파진동의 크기를 감량 시키기 위한 정밀파실험식 (On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works.)

  • 허진
    • 화약ㆍ발파
    • /
    • 제9권1호
    • /
    • pp.3-13
    • /
    • 1991
  • 발파에 의한 지반진동의 크기는 화약류의 종류에 따른 화약의 특성, 장약량, 기폭방법, 전새의 상태와 화약의 장전밀도, 자유면의 수, 폭원과 측간의 거리 및 지질조건 등에 따라 다르지만 지질 및 발파조건이 동일한 경우 특히 측점으로부터 발파지점 까지의 거리와 지발당 최대장약량 (W)간에 깊은 함수관계가 있음이 밝혀졌다. 즉 발파진동식은 $V=K{\cdot}(\frac{D}{W^b})^n{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (1) 여기서 V ; 진동속도, cm /sec D ; 폭원으로부터의 거리, m W ; 지발 장약량, kg K ; 발파진동 상수 b ; 장약지수 R ; 감쇠지수 이 발파진동식에서 b=1/2인 경우 즉 $D{\;}/{\;}\sqrt{W}$를 자승근 환산거리(Root scaled distance), $b=\frac{1}{3}$인 경우 즉 $D{\;}/{\;}\sqrt[3]{W}$를 입방근환산거리(Cube root scaled distance)라 한다. 이 장약 및 감쇠지수와 발파진동 상수를 구하기 위하여 임의거리와 장약량에 대한 진동치를 측정, 중회귀분석(Multiple regressional analysis)에 의해 일반식을 유도하고 Root scaling과 Cube root scaling에 대한 회귀선(regression line)을 구하여 회귀선에 대한 적합도가 높은 쪽을 택하여 비교, 검토하였다. 위 (1)식의 양변에 log를 취하여 linear form(직선형)으로 바꾸어 쓰면 (2)式과 같다. log V=A+BlogD+ClogW ----- (2) 여기서, A=log K B=-n C=bn (2)식은 다시 (3)식으로 표시할 수 있다. $Yi=A+BXi_{1}+CXi_{2}+{\varepsilon}i{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$(3) 여기서, $Xi_{1},{\;}Xi_{2} ;(두 독립변수 logD, logW의 i번째 측정치. Yi ; ($Xi_1,{\;}Xi_2$)에 대한 logV의 측정치 ${\varepsilon}i$ ; error term 이다. (3)식에서 n개의 자료를 (2)식의 회귀평면으로 대표시키기 위해서는 $S={\sum}^n_{i=1}\{Yi-(A+BXi_{1}+CXi_{2})\}\^2$을 최소로하는 A, B, C 값을 구하면 된다. 이 방법을 최소자승법이 라 하며 S를 최소로 하는 A, B, C의 값은 (4)식으로 표시한다. $\frac{{\partial}S}{{\partial}A}=0,{\;}\frac{{\partial}S}{{\partial}B}=0,{\;}\frac{{\partial}S}{{\partial}C}=0{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (4) 위식을 Matrix form으로 간단히 나타내면 식(5)와 같다. [equation omitted] (5) 자료가 많아 계산과정이 복잡해져서 본실험의 정자료들은 전산기를 사용하여 처리하였다. root scaling과 Cube root scaling의 경우 각각 $logV=A+B(logD-\frac{1}{2}W){\;}logV=A+B(logD-\frac{1}{3}W){\;}\}{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (6) 으로 (2)식의 특별한 형태이며 log-log 좌표에서 직선으로 표시되고 이때 A는 절편, B는 기울기를 나타낸다. $\bullet$ 측정치의 검토 본 자료의 특성을 비교, 검토하기 위하여 지금까지 발표된 국내의 몇몇 자료를 보면 다음과 같다. 물론, 장약량, 폭원으로 부터의 거리등이 상이하지만 대체적인 경향성을 추정하는데 참고할수 있을 것이다. 금반 총실측자료는 총 88개이지만 환산거리(5.D)와 진동속도의 크기와의 관계에서 차이를 보이고 있어 편선상 폭원과 측점지점간의 거리에 따라 l00m말만인 A지역과 l00m이상인B지역으로 구분하였다. 한편 A지역의 자료 56개중, 상하로 편차가 큰 19개를 제외한 37개자료와 B지역의 29개중 2개를 낙외한 27개(88개 자료중 거리표시가 안된 12월 1일의 자료3개는 원래부터 제외)의 자료를 computer로 처리하여 얻은 발파진동식은 다음과 같다. $V=41(D{\;}/{\;}\sqrt[3]{W})^{-1.41}{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (7) (-100m)(R=0.69) $V=124(D{\;}/{\;}\sqrt[3]{W})^{-1.66){\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (8) (+100m)(R=0.782) 식(7) 및 (8)에서 R은 구한 직선식의 적합도를 나타내는 상관계수로 R=1인때는 모든 측정자료가 하나의 직선상에 표시됨을 의미하며 그 값이 낮을수록 자료가 분산됨을 뜻한다. 본 보고에서는 상관계수가 자승근거리때 보다는 입방근일때가 더 높기 때문에 발파진동식을 입방근($D{\;}/{\;}\sqrt[3]{W}$)으로 표시하였다. 특히 A지역에서는 R=0.69인데 비하여 폭원과 측점지점간의 거리가 l00m 이상으로 A지역보다 멀리 떨어진 B지역에서는 R=0.782로 비교적 높은 값을 보이는 것은 진동성분중 고주파성분의 상당량이 감쇠를 당하기 때문으로 생각된다.

  • PDF

회사채 신용등급 예측을 위한 SVM 앙상블학습 (Ensemble Learning with Support Vector Machines for Bond Rating)

  • 김명종
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.29-45
    • /
    • 2012
  • 회사채 신용등급은 투자자의 입장에서는 수익률 결정의 중요한 요소이며 기업의 입장에서는 자본비용 및 기업 가치와 관련된 중요한 재무의사결정사항으로 정교한 신용등급 예측 모형의 개발은 재무 및 회계 분야에서 오랫동안 전통적인 연구 주제가 되어왔다. 그러나, 회사채 신용등급 예측 모형의 성과와 관련된 가장 중요한 문제는 등급별 데이터의 불균형 문제이다. 예측 문제에 있어서 데이터 불균형(Data imbalance) 은 사용되는 표본이 특정 범주에 편중되었을 때 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류경계영역이 왜곡되므로 분류자의 학습성과가 저하되게 된다. 본 연구에서는 데이터 불균형 문제가 존재하는 다분류 문제를 효과적으로 해결하기 위한 다분류 기하평균 부스팅 기법 (Multiclass Geometric Mean-based Boosting MGM-Boost)을 제안하고자 한다. MGM-Boost 알고리즘은 부스팅 알고리즘에 기하평균 개념을 도입한 것으로 오분류된 표본에 대한 학습을 강화할 수 있으며 불균형 분포를 보이는 각 범주의 예측정확도를 동시에 고려한 학습이 가능하다는 장점이 있다. 회사채 신용등급 예측문제를 활용하여 MGM-Boost의 성과를 검증한 결과 SVM 및 AdaBoost 기법과 비교하여 통계적으로 유의적인 성과개선 효과를 보여주었으며 데이터 불균형 하에서도 벤치마킹 모형과 비교하여 견고한 학습성과를 나타냈다.

토모테라피를 이용한 간암환자의 정위적 방사선치료시 복부압박장치의 유용성 평가 (Usefulness of Abdominal Compressor Using Stereotactic Body Radiotherapy with Hepatocellular Carcinoma Patients)

  • 우중열;김주호;김준원;백종걸;박광순;이종민;손동민;이상규;전병철;조정희
    • 대한방사선치료학회지
    • /
    • 제24권2호
    • /
    • pp.157-165
    • /
    • 2012
  • 목 적: 간에 발생한 절제 불가능한 원발성 및 전이성 종양에서 토모테라피를 이용한 정위적 방사선치료를 시행하기 위해 사용된 복부압박장치의 유용성을 평가하고자 하였다. 대상 및 방법: 2011년 11월부터 2012년 3월까지 토모테라피(Hi-Art Tomotherapy, USA)를 시행받기 위해 본원에 내원한 간암환자 중 복부압박장치(diaphragm control, elekta, sweden)를 사용하였을 때 움직임이 1 cm 이상 줄어든 환자를 대상으로 하였다. 4D CT (somatom sensation, siemens, germany)를 통해 치료계획영상과 4차원 단층촬영영상을 촬영하고, 육안적으로 보이는 종양과 종양의 움직임을 고려하여 육안적 종양체적(gross tumor volume, GTV)으로 설정하였고, GTV 주변으로 균일하게 5~7 mm의 여유를 주어 치료계획용 종양체적(planning target volume, PTV)으로 설정하였다. 손상위험장기(organs at risk) 중 십이지장, 위, 대장의 거리가 종양으로부터 최소 1 cm 이상인 환자들을 1군($d{\geq}1$)으로, 1 cm 미만인 환자들을 2군(d<1)으로 분류하고 각각 4~5회의 정위적 방사선치료와 20회의 방사선치료를 계획하였다. Mega-voltage computed tomograpy (MVCT)와 kilo-voltage computed tomograpy (KVCT)를 일차적으로 골격구조셋팅(bone-technique)으로 융합(fusion)한 뒤, 이차적으로 간을 보며 영상을 재조정 하였다. 치료 후 얻은 MVCT 영상을 영상변형이 가능한 Mim_vista (Mimsoftware, ver. 5.4 USA)로 보내고, 간을 비교하여 다시 묘사(delineate)하고, 손상위험장기 중 십이지장, 위, 소장, 대장을 합쳐서 대장장기(bowel_organ)로 정의하여 다시 묘사하였다. 보정방사선 치료계획시스템을 통하여 보정영상의 치료계획 선량과 보정된 선량의 차이를 평가하였다. 첫 번째, 치료 시작일부터 각각 1군($d{\geq}1$)은 4회, 2군(d<1)은 10회까지의 MVCT와 KVCT간의 영상 융합을 통한 셋업오차를 분석하였다. 두 번째, 보정영상에서 종양 즉, GTV, PTV의 치료계획선량과 보정선량의 3%의 선량차이를 나타내는 체적($V_{diff3%}$)과 5%의 선량차이를 나타내는 체적($V_{diff3%}$)을 비교하였고, 손상위험장기 중 대장장기의 최대선량의 차이율을 비교하였다. 결 과: MVCT를 통해 분석한 평균 셋업오차는 $-0.66{\pm}1.53$ mm (좌-우), $0.39{\pm}4.17$ mm (상-하), $0.71{\pm}1.74$ mm (전-후), $-0.18{\pm}0.30$ degrees (roll)였다. 1군($d{\geq}1$)과 2군(d<1)의 셋업오차는 유사하였다. 1군($d{\geq}1$)에서 보정방사선 치료계획을 통한 $V_{diff3%}$ 중 GTV는 $0.78{\pm}0.05%$, PTV는 $9.97{\pm}3.62%$, $V_{diff5%}$ 중 GTV는 0.0%, PTV는 $2.9{\pm}0.95%$, 대장장기의 최대선량의 차이율은 $-6.85{\pm}1.11%$였다. 2군(d<1)에서 $V_{diff3%}$ 중 GTV는 $1.62{\pm}0.55%$, PTV는 $8.61{\pm}2.01%$, $V_{diff5%}$ 중 GTV는 0.0%, PTV는 $5.33{\pm}2.32%$, 대장장기의 최대선량의 차이율은 $28.33{\pm}24.41%$였다. 결 론: 복부압박장치를 통한 간암의 방사선치료시 MVCT를 통한 환자 셋업오차는 평균 ${\pm}5$ mm 이하였고, 복부 압박장치를 사용하고 투시영상을 통해 확인한 횡경막의 움직임이 최소 5 mm 이상이라는 것을 감안하면, 환자 셋업오차는 그 안에 있음을 알 수 있었다. 1군($d{\geq}1$)과 2군(d<1)에서 GTV, PTV의 선량차이율은 오차범위 안에 있었고, 1군($d{\geq}1$)과 2군(d<1)의 대장장기 최대선량의 차이율은 최대 35% 이상의 차이를 보였고, 1군($d{\geq}1$)이 2군(d<1)보다 오차범위가 작았다. 따라서 간내 종양과 손상위험장기의 거리가 최소 1 cm 이상 유지된다면 정위적 방사선치료를 진행함에 복부압박장치가 도움이 될 수 있을 것으로 사료된다.

  • PDF

소비자의 제품 지각 위험에 대한 기업연상과 효과: 지식과 관여의 조절적 역활을 중심으로 (The Effect of Corporate Association on the Perceived Risk of the Product)

  • 조현철;강석후;김진용
    • 마케팅과학연구
    • /
    • 제18권4호
    • /
    • pp.1-32
    • /
    • 2008
  • 기업연상(corporate association)이 제품 평가(product responses)에 어떻게 영향을 미치는 가에 대한 연구가 부진하다는 Brown and Dacin(1997)의 문제 제기가 있은 후, 기업연상이 제품 판단에 미치는 영향과 과정에 대한 조절변수와 매개변수들을 파악하려는 연구가 진행되어 왔다. 본 연구에서는 기업연상의 두가지 유형인 CA(corporate ability) 연상과 CSR(corporate social responsibility) 연상이 성능과 재무위험에 미치는 영향력과 그 영향력을 조절하는 변수들을 조사하였다. 분석 결과에 의하면, 주효과(main effects)에 있어서는, 가설에서 기대한 바와 같이 CA 연상이 성능위험과 재무위험에 유의한 영향력을 갖는 것으로 나타난 반면, CSR 연상은 성능위험과 재무위험에 대해 유의한 영향력을 갖지 않는 것으로 나타났다. 조절변수로 인한 상호작용효과와 관련해서는, CA 연상이 성능위험과 재무위험에 미치는 주효과에 대해 제품범주 지식과 관여는 각각 유의한 조절효과를 나타내었다. 하지만, CSR 연상이 성능위험과 재무위험에 미치는 주효과에 대해서는 제품범주 지식과 관여의 조절효과는 나타나지 않았다. 이러한 연구 결과를 통하여 제품의 기능적인 속성에 대한 정보가 부족한 제품에 대해 소비자가 지각하는 위험을 감소시키기 위하여, 기업은 CSR 연상보다는 CA 연상에 대해 강조할 필요가 있다는 결론을 내리게 되었다.

  • PDF

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF