• Title/Summary/Keyword: Error Mode

Search Result 1,220, Processing Time 0.031 seconds

Sliding Mode Control with Finite Time Error Convergence

  • Park, Kang-Bak;Teruo Tsuji;Tsuyoshi Hanamoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.96-99
    • /
    • 1999
  • In this paper, a sliding node controller guaranteeing finite time error convergence is proposed jot uncertain systems. By using a novel sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time.

  • PDF

Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems (전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

Fuzzy Moving Sliding Model Control for Robotic Manipulators (로봇 매니퓰레이터를 위한 퍼지 이동슬라이딩 모드 제어)

  • Chun, Kyung-Han;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.597-604
    • /
    • 2001
  • Recently, the study of the moving sliding mode in the variable structure control is in progress ac-tively. The conventional time-invariant sliding model control can\`t guarantee the sliding mode in the reaching phase, which is robust against the uncertainty. But with the time-varying method, the controller makes the states track the desired trajectories and keeps the sliding mode. Nevertheless, the piecewise continuous method of the past still has the reaching mode. Thus we propose the continuously moving sliding surface by the fuzzy algorithm. The proposed algorithm is made of the fuzzy rule considering both the error and the error velocity, and may apply to the entire phase plane without sacrificing sliding mode. Especially the proposed scheme can rotate tot he slope-decreasing direction, needless to say rotating to the slope-increasing direction. For showing that the proposed controller guarantees the sliding model and ensures the robustness, we apply the proposed method to the two-link robot manipulator simulation.

  • PDF

1.6 Tb/s (160x10 Gb/s) WDM Transmission over 2,000 km of Single Mode Fiber (1.6 Tb/s (160x10 Gb/s) WDM 신호의 단일 모드 광섬유 2,000 km 전송)

  • 한진수;장순혁;이현재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.712-718
    • /
    • 2004
  • We report 1.6 Tb/s (160${\times}$10 Gb/s) WDM transmission over 2,000 km of single mode fiber using distributed hybrid(distributed Raman amplifier+Erbium-doped fiber amplifier) optical amplifiers. After transmission over 2,000 km of single mode fiber, average optical signal to noise ratios of C/L-band were 20.5 dB, 21.9 dB, respectively. The minimum Q-factors of each band were 14.65 dB (BER=5.8e-8) in C-band, 13.75 dB (BER=5.0e-7) in L-band without forward error correction. We performed 1.6 Tb/s error-free transmission over 2,000 km of single mode fiber using Reed-Solomon (255, 239) forward error correction code.

Blind Equalization of Digital Television Broadcasting Signals in Dynamic Multipath Channels (다이내믹 다중경로 채널에서의 디지털 텔레비전 방송 신호에 대한 블라인드 등화)

  • 오길남
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.269-274
    • /
    • 2004
  • In this paper, proposed is the dual-mode algorithm of blind decision feedback equalizer (DFE) for digital terrestrial television signals. According to channel impairments, the proposed dual-mode algorithm for blind DFE operates in decision-directed mode or in blind mode of operation. The error signals being used in tap update of the equalizer are generated in the best mode of operations, so that the confidence of equalizer tap coefficient update is more accurate. As a result, it is possible to track the channel characteristics variations by automatic switching over between two modes of operations. For 8-level vestigial sideband modulated digital television signals, the mean square errors and symbol error rates of the proposed algorithm are compared with those of conventional methods. And the usability of the proposed scheme is assessed by computer simulations under various static and dynamic multipath channel environments.

A study on an error recovery expert system in the advanced teleoperator system (지적 원격조작시스템의 일환으로서 에러회복 전문가 시스템에 관한 연구)

  • 이순요;염준규;오제상;이창민
    • Journal of the Ergonomics Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.19-28
    • /
    • 1987
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment, then the mode changes into the manual mode. The operation by program and the operation by hyman recover the error in the manual mode. The system resumew the automatic mode and continues the given task. In order to utilize the inverse kinematics as means of the operation by program in the manual mode, Lee and Nagamachi determined the end point of the robot trajectory planning which varied with the height of the task object recognized by a T.V monitor, solved the end point by the fuzzy set theory, and controlled the position of the robot hand by the inverse kinematics and the posture of the robot hand by the operation by human. But the operation by human did take a lot of task time because the position and the posture of the robot hand were separately controlled. To reduce the task time by human, this paper developes an error recovery expert system (ERES). The position of the robot hand is controlled by the inverse kinematics of the cartesian coordinate system to the end point which is deter- mined by the fuzzy set theory. The posture of the robot hand is controlled by the modulality of the robot hand's motion which is made by the posture of the task object. The knowledge base and the inference engine of the ERES is developed using the muLISP-86 language. The experimental results show that the average task time by human the ERES which was performed by the integration of the position and the posture control of the robot hand is shorter than that of the research, done by the preliminary experiment, which was performed by the separation of the position and the posture control of the robot hand. A further study is likely to research into an even more intelligent robot system control usint a superimposed display and digitizer which can present two-dimensional coordinate of the work space for the convenience of human interaction.

  • PDF

Robust Control for Nonlinear Friction Servo System Using Fuzzy Neural Network and Robust Friction State Observer (퍼지신경망과 강인한 마찰 상태 관측기를 이용한 비선형 마찰 서보시스템에 대한 강인 제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper, the position tracking control problem of the servo system with nonlinear dynamic friction is issued. The nonlinear dynamic friction contains a directly immeasurable friction state variable and the uncertainty caused by incomplete parameter modeling and its variations. In order to provide the efficient solution to these control problems, we propose the composite control scheme, which consists of the robust friction state observer, the FNN approximator and the approximation error estimator with sliding mode control. In first, the sliding mode controller and the robust friction state observer is designed to estimate the unknown internal state of the LuGre friction model. Next, the FNN estimator is adopted to approximate the unknown lumped friction uncertainty. Finally, the adaptive approximation error estimator is designed to compensate the approximation error of the FNN estimator. Some simulations and experiments on the servo system assembled with ball-screw and DC servo motor are presented. Results show the remarkable performance of the proposed control scheme. The robust friction state observer can successfully identify immeasurable friction state and the FNN estimator and adaptive approximation error estimator give the robustness to the proposed control scheme against the uncertainty of the friction parameters.

Enhancement of the Speed Response of PMSM Sensorless Control Using A New Adaptive Sliding Mode Observer (새로운 적응 슬라이딩 모드 관측기를 이용한 PMSM 센서리스 속도 응답특성 향상)

  • Kim, Hong-Ryel;Son, Ju-Beom;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.160-167
    • /
    • 2010
  • This paper proposes an adaptive sliding mode observer (SMO), which adds the estimation function of the stator resistance to a new sliding mode observer for the robust sensorless control of permanent magnet synchronous motor (PMSM) with variable parameters. To reduce the chattering problem commonly found in the conventional sliding mode observer where the low-pass filter and additional position compensation of the rotor are used, the sigmoid function is used for the control of a switching function in this research. With the estimation of the stator resistance, the proposed observer can improve the control performance by reducing the estimation error of the motor's speed. Note that the stator resistance is varying with the ambient temperature and becomes an error source for the sensorless control of PMSM. The new sliding mode observer has better efficiency than the conventional adaptive sliding mode observer by reducing the time consuming integral calculations. The stability of the proposed adaptive sliding mode observer is verified by the Lyapunov function in determining the observer gains, and the effectiveness of the observer is demonstrated by simulations and experiments.

Discrete-Time Sliding Mode Controller Design for Scanner system (Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF

Design of Sliding Mode Controller with Auto-tuning Method

  • He, Wei;Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.2
    • /
    • pp.43-50
    • /
    • 2013
  • Sliding mode control(SMC) are carried out in this literature. And to make the controllers perform better, fuzzy logic was chosen,it makes PID controller auto-tuning parameters and reduced the chattering problem of sliding mode control. Since SMC take error and derivative of error as inputs, after comparison some results are obtained.PID controller response faster yet sliding mode control is much steadier. However certain problems cannot be ignored that the chattering phenomenal cannot be reduced entirely and this motion may hurt the machine; this project only considered a simple system, there is no guarantee PID can work as well as in this case for a much more complex system. MATLAB simulink was the main approach to obtain the performance of the two controllers: to observe the control output of the two controllers, electric circuit and special controllers are designed and tested in MATLAB.