• Title/Summary/Keyword: Error Indicator

Search Result 178, Processing Time 0.026 seconds

THE USE OF NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS) TO PREDICT CHEMICAL COMPOSITION ON MAIZE SILAGE

  • D.Cozzolino;Fassio, A.;Mieres, J.;Y.Acosta
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1610-1610
    • /
    • 2001
  • Microbiological examination of silage is of little value in gauging the outcome of silage, and so chemical analysis is more reliable and meaningful indicator of quality. On the other hand chemical assessments of the principal fermentation products provide an unequivocal basis on which to judge quality. Livestock require energy, protein, minerals and vitamins from their food. While fresh forages provide these essential items, conserved forages on the other hand may be deficient in one or more of them. The aim of the conservation process is to preserve as many of the original nutrients as possible, particularly energy and protein components (Woolford, 1984). Silage fermentation is important to preservation of forage with respect of feeding value and animal performance. Chemical and bacteriological changes in the silo during the fermentation process can affect adversely nutrient yield and quality (Moe and Carr, 1984). Many of the important chemical components of silage must be assayed in fresh or by extraction of the fresh material, since drying either by heat or lyophilisation, volatilises components such as acids or nitrogenous components, or effects conversion to other compounds (Abrams et al., 1987). Maize silage dorms the basis of winter rations for the vast majority of dairy and beef cattle production in Uruguay. Since nutrient intake, particularly energy, from forages is influenced by both voluntary dry matter intake and digestibility; there is a need for a rapid technique for predicting these parameters in farm advisory systems. Near Infrared Reflectance Spectroscopy (NIRS) is increasingly used as a rapid, accurate method of evaluating chemical constituents in cereals and dried forages. For many years NIRS was applied to assess chemical composition in dry materials (Norris et al., 1976, Flinn et al., 1992; Murray, 1993, De Boever et al., 1996, De la Roza et al., 1998). The objectives of this study were (1) to determine the potential of NIRS to assess the chemical composition of dried maize samples and (2) to attempt calibrations on undried samples either for farm advisory systems or for animal nutrition research purposes in Uruguay. NIRS were used to assess the chemical composition of whole - plant maize silage samples (Zea mays, L). A representative population of samples (n = 350) covering a wide distribution in chemical characteristics were used. Samples were scanned at 2 nm intervals over the wavelength range 400-2500 nm in a NIRS 6500 (NIRSystems, Silver Spring, MD, USA) in reflectance mode. Cross validation was used to avoid overfitting of the equations. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The calibration statistics were R$^2$ 0. 86 (SECV: 11.4), 0.90 (SECV: 5.7), 0.90 (SECV: 16.9) for dry matter (DM), crude protein (CP), acid detergent fiber (ADF) in g kg$\^$-1/ on dry matter, respectively for maize silage samples. This work demonstrates the potential of NIRS to analyse whole - maize silage in a wide range of chemical characteristics for both advisory farm and nutritive evaluation.

  • PDF

Predicting Unsaturated Soil Water Content Using CIELAB Color System-based Soil Color (CIELAB 색 표시계 기반 토색을 활용한 불포화토 함수비 예측 연구)

  • Baek, Sung-Ha;Park, Ka-Hyun;Jeon, Jun-Seo;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.2
    • /
    • pp.31-42
    • /
    • 2023
  • A study was conducted to use soil color obtained from digital im ages as an indicator of soil water content. Digital images of Jumoonjin standard sand with five different water contents were captured under nine different lighting conditions. Through digital image processing, the soil color of the sample was obtained based on the CIELAB color system, and the effect of lighting conditions and water content on the soil color was analyzed. The results indicated that L* showed a high correlation with illuminance, whereas a* and b* showed a high correlation with color temperature. As the water content increased, L*, which represents the brightness of the soil color, decreased, and a* and b* increased. Therefore, the soil color changed from green and blue to red and yellow. Based on the regression analysis results of lighting conditions, water content, and soil color, a water content predicting method based on the soil color of silica-based sand photographed under irregular light conditions was proposed. The proposed method can predict the water content with a m axim um error of 0.29%.

The Study on the Dilution Time of Radioactive Tracer in Estradiol Measurement (Estradiol 검사 시 방사성 추적자의 희석시간에 대한 고찰)

  • Lee, Hae Yeon;Seo, Han Kyung;Jang, Yi Sun;Kim, Hee Jeoung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.44-48
    • /
    • 2017
  • Purpose Estradiol (E2) is a steroid hormone mainly produced in women and is a useful indicator for diagnosis of gynecological diseases, menstrual cycle, menopause, and precocious puberty. E2 measurement is performed by diluting the $^{125}I$ radioactive tracer and tracer buffer in the kit. However, It was not precisely specified when the period of tracer is available after activating. The purpose of this study was to determine the appropriate dilution time based on the measurement value with dilution time. Materials and Methods From December 2016 to February 2017, 60 E2 samples with concentrations ranging from 8 to 4577 pg/mL were divided into low, medium, and high concentrations. Dilution of the $^{125}I$ tracer was performed on a 230 RPM agitator for 30 minutes, 1 hour 30 minutes, and 2 hours 30 minutes, respectively. 24 hour dilution was gently shaken and refrigerated. To verify the difference and significance of the results according to the dilution time, a test of normality was performed using SPSS 18.0 and analyzed by Kruskal-Wallis test. The measured value according to the dilution time was compared with the interquartile range of the absolute error. Results The results of Kruskal-Wallis test were not significant (P>0.05). Measurement results are showed as interquartile range of absolute error. At low concentration, it is 0.052 between 1 hour 30 minutes and 2 hours 30 minutes, and 0.105 between 30 minutes and 1 hour 30 minutes. At medium concentration, 0.062 between 30 minutes and 1 hour 30 minutes, and 0.038 between 1 hour 30 minutes and 2 hours 30 minutes. At high concentration, it is 0.029 between 1 hour 30 minutes and 2 hours 30 minutes, and 0.06 between 2 hours 30 minutes and 24 hours. Conclusion There were no statistically significant differences. However, the change in the measured value is the smallest between 1 hour and 30 minutes to 2 hours and 30 minutes. Therefore, we recommend diluting time between 1 hour 30 minutes and 2 hours 30 minutes.

  • PDF

Study on the Correlation between Refractive error and Components of Eye's Optical system in Children and Teenagers in an Optometric Practice (안과 병원을 내원한 소아 청소년의 굴절이상과 안광학 성분간의 상관관계 연구)

  • Ha, Na-Ri;Kim, Hyun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • Purpose: The purpose of this study to evaluate visual acuity and refractive state and measure and analyze the components of eye's optical system in children and teenagers. Methods: With subjects of 124 (230 eyes) children and teenagers who had no eye diseases, correlation between the correlation between refractive errors and component's of eye's optical system was investigated. The spherical equivalent power of cycloplegic clinical refraction or manifest clinical refraction(SE), corneal power(CP), corneal radius(CR), axial length(AL), anterior chamber depth(ACD) and axial length to corneal radius (AL/CR) ratio were measured and analysed. Results: the SE was negatively correlated with the AL(r = -0.80, p = 0.00), the ACD(r = -0.35, p = 0.00) and the CR(r = -0.11, p=0.00) and positively correlated with the CP(r = +0.11, p=0.00). The AL was positively correlated with the AL/CR ratio (r = +0.84, p = 0.00), the ACD(r = +0.47, p=0.00) and the CR(r = +0.38, p = 0.00) and negatively correlated with the CP(r = -0.38, p=0.00). The CR was negatively correlated with CP(r = -1.00, p = 0.00), the AL/CR ratio(r = -0.19, p = 0.00) and the ACD(r = -0.06, p = 0.39). The CP was positively correlated with the AL/CR ratio(r = +0.19, p = 0.00) and the ACD(r = +0.06, p = 0.39). The ACD was positively correlated with the AL/CR ratio(r = 0.53, p = 0.00). Conclusions: the highest change of refractive errors was shown that the AL/CR ratio was a very important indicator for diagnosing the refractive errors of the children and teenagers.

The Role of T1-201 Brain SPECT in the Differentiating Recurrent Tumor from Radiation Necrosis (뇌종양의 재발과 방사선 괴사의 감별을 위한 탈륨 SPECT의 역할)

  • Won, Kyoung-Sook;Ryu, Jin-Sook;Moon, Dae-Hyuk;Yang, Seoung-Oh;Lee, Hee-Kyung;Lee, Jung-Kyo;Kwun, Byung-Duk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.476-483
    • /
    • 1996
  • Following radiation therapy for brain tumors, patients often have clinical deterioration due to either radiation necrosis or recurrent tumor progression in the treatment field. The distinction between these entities is important but difficult clinically or even with CT or MRI. T1-201 has been known to accumulate in various tumors and be useful to grade, predict prognosis or detect recurrence of glioma. The aim of this study was to evaluate the usefulness of T1-201 SPECT in the differentiation of recurrent tumor from radiation necrosis. Of 67 patients who did T1-201 brain SPECT imaging with clinically suspected recurrent tumor or radiation necrosis, 20 patients underwent histopathological examination and constituted the study population. T1-201 uptake indices on T1-201 brain SPECT imaging rrere calculated and correlated with histopathological diagnosis. Of 20 patients, 15 were histopathologically confirmed as recurrent original tumor or malignant transformation of benign tumor and 5 were diagnosed as radiation necrosis. On T1-201 SPECT, 18 of 20 had T1-201 index above 2.5 which was regarded as positive indicator for the presence of tumor. Seventeen cases showed concordance, which consisted of 15 true positive and 2 true negative. Discordant 3 cases were all false positive. There was no case of false negative. The sensitivity, specificity, positive and negative predictive value of T1-201 SPECT were 100%, 40%, 83% and 100%. In conclusion, T1-201 brain SPECT is a sensitive diagnostic test in the detection of recurrent tumor following radiation therapy and is useful in the differentiation of recurrent tumor from radiation necrosis. Relatively low specificity should be evaluated further in larger number of patients in consideration of sampling error and referral bias for pathologic examination.

  • PDF

The Comparative Analysis of External Dose Reconstruction in EPID and Internal Dose Measurement Using Monte Carlo Simulation (몬테 카를로 전산모사를 통한 EPID의 외부적 선량 재구성과 내부 선량 계측과의 비교 및 분석)

  • Jung, Joo-Young;Yoon, Do-Kun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2013
  • The purpose of this study is to evaluate and analyze the relationship between the external radiation dose reconstruction which is transmitted from the patient who receives radiation treatment through electronic portal imaging device (EPID) and the internal dose derived from the Monte Carlo simulation. As a comparative analysis of the two cases, it is performed to provide a basic indicator for similar studies. The geometric information of the experiment and that of the radiation source were entered into Monte Carlo n-particle (MCNPX) which is the computer simulation tool and to derive the EPID images, a tally card in MCNPX was used for visualizing and the imaging of the dose information. We set to source to surface distance (SSD) 100 cm for internal measurement and EPID. And the water phantom was set to be 100 cm of the source to surface distance (SSD) for the internal measurement and EPID was set to 90 cm of SSD which is 10 cm below. The internal dose was collected from the water phantom by using mesh tally function in MCNPX, accumulated dose data was acquired by four-portal beam exposures. At the same time, after getting the dose which had been passed through water phantom, dose reconstruction was performed using back-projection method. In order to analyze about two cases, we compared the penetrated dose by calibration of itself with the absorbed one. We also evaluated the reconstructed dose using EPID and partially accumulated (overlapped) dose in water phantom by four-portal beam exposures. The sum dose data of two cases were calculated as each 3.4580 MeV/g (absorbed dose in water) and 3.4354 MeV/g (EPID reconstruction). The result of sum dose match from two cases shows good agreement with 0.6536% dose error.

Two-dimensional Velocity Measurements of Campbell Glacier in East Antarctica Using Coarse-to-fine SAR Offset Tracking Approach of KOMPSAT-5 Satellite Image (KOMPSAT-5 위성영상의 Coarse-to-fine SAR 오프셋트래킹 기법을 활용한 동남극 Campbell Glacier의 2차원 이동속도 관측)

  • Chae, Sung-Ho;Lee, Kwang-Jae;Lee, Sungu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2035-2046
    • /
    • 2021
  • Glacier movement speed is the most basic measurement for glacial dynamics research and is a very important indicator in predicting sea level rise due to climate change. In this study, the two-dimensional velocity measurements of Campbell Glacier located in Terra Nova Bay in East Antarctica were observed through the SAR offset tracking technique. For this purpose, domestic KOMPSAT-5 SAR satellite images taken on July 9, 2021 and August 6, 2021 were acquired. The Multi-kernel SAR offset tracking proposed through previous studies is a technique to obtain the optimal result that satisfies both resolution and precision. However, since offset tracking is repeatedly performed according to the size of the kernel, intensive computational power and time are required. Therefore, in this study, we strategically proposed a coarse-to-fine offset tracking approach. Through coarse-to-fine SAR offset tracking, it is possible to obtain a result with improved observation precision (especially, about 4 times in azimuth direction) while maintaining resolution compared to general offset tracking results. Using this proposed technique, a two-dimensional velocity measurements of Campbell Glacier were generated. As a result of analyzing the two-dimensional movement velocity image, it was observed that the grounding line of Campbell Glacier exists at approximately latitude -74.56N. The flow velocity of Campbell Glacier Tongue analyzed in this study (185-237 m/yr) increased compared to that of 1988-1989 (140-240 m/yr). And compared to the flow velocity (181-268 m/yr) in 2010-2012, the movement speed near the ground line was similar, but it was confirmed that the movement speed at the end of the Campbell Glacier Tongue decreased. However, there is a possibility that this is an error that occurs because the study result of this study is an annual rate of glacier movement that occurred for 28 days. For accurate comparison, it will be necessary to expand the data in time series and accurately calculate the annual rate. Through this study, the two-dimensional velocity measurements of the glacier were observed for the first time using the KOMPSAT-5 satellite image, a domestic X-band SAR satellite. It was confirmed that the coarse-to-fine SAR offset tracking approach of the KOMPSAT-5 SAR image is very useful for observing the two-dimensional velocity of glacier movements.

An Iterative, Interactive and Unified Seismic Velocity Analysis (반복적 대화식 통합 탄성파 속도분석)

  • Suh Sayng-Yong;Chung Bu-Heung;Jang Seong-Hyung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • Among the various seismic data processing sequences, the velocity analysis is the most time consuming and man-hour intensive processing steps. For the production seismic data processing, a good velocity analysis tool as well as the high performance computer is required. The tool must give fast and accurate velocity analysis. There are two different approches in the velocity analysis, batch and interactive. In the batch processing, a velocity plot is made at every analysis point. Generally, the plot consisted of a semblance contour, super gather, and a stack pannel. The interpreter chooses the velocity function by analyzing the velocity plot. The technique is highly dependent on the interpreters skill and requires human efforts. As the high speed graphic workstations are becoming more popular, various interactive velocity analysis programs are developed. Although, the programs enabled faster picking of the velocity nodes using mouse, the main improvement of these programs is simply the replacement of the paper plot by the graphic screen. The velocity spectrum is highly sensitive to the presence of the noise, especially the coherent noise often found in the shallow region of the marine seismic data. For the accurate velocity analysis, these noise must be removed before the spectrum is computed. Also, the velocity analysis must be carried out by carefully choosing the location of the analysis point and accuarate computation of the spectrum. The analyzed velocity function must be verified by the mute and stack, and the sequence must be repeated most time. Therefore an iterative, interactive, and unified velocity analysis tool is highly required. An interactive velocity analysis program, xva(X-Window based Velocity Analysis) was invented. The program handles all processes required in the velocity analysis such as composing the super gather, computing the velocity spectrum, NMO correction, mute, and stack. Most of the parameter changes give the final stack via a few mouse clicks thereby enabling the iterative and interactive processing. A simple trace indexing scheme is introduced and a program to nike the index of the Geobit seismic disk file was invented. The index is used to reference the original input, i.e., CDP sort, directly A transformation techinique of the mute function between the T-X domain and NMOC domain is introduced and adopted to the program. The result of the transform is simliar to the remove-NMO technique in suppressing the shallow noise such as direct wave and refracted wave. However, it has two improvements, i.e., no interpolation error and very high speed computing time. By the introduction of the technique, the mute times can be easily designed from the NMOC domain and applied to the super gather in the T-X domain, thereby producing more accurate velocity spectrum interactively. The xva program consists of 28 files, 12,029 lines, 34,990 words and 304,073 characters. The program references Geobit utility libraries and can be installed under Geobit preinstalled environment. The program runs on X-Window/Motif environment. The program menu is designed according to the Motif style guide. A brief usage of the program has been discussed. The program allows fast and accurate seismic velocity analysis, which is necessary computing the AVO (Amplitude Versus Offset) based DHI (Direct Hydrocarn Indicator), and making the high quality seismic sections.

  • PDF