• Title/Summary/Keyword: Error Analysis

Search Result 9,253, Processing Time 0.041 seconds

Analysis and Prediction of Sewage Components of Urban Wastewater Treatment Plant Using Neural Network (대도시 하수종말처리장 유입 하수의 성상 평가와 인공신경망을 이용한 구성성분 농도 예측)

  • Jeong, Hyeong-Seok;Lee, Sang-Hyung;Shin, Hang-Sik;Song, Eui-Yeol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.308-315
    • /
    • 2006
  • Since sewage characteristics are the most important factors that can affect the biological reactions in wastewater treatment plants, a detailed understanding on the characteristics and on-line measurement techniques of the influent sewage would play an important role in determining the appropriate control strategies. In this study, samples were taken at two hour intervals during 51 days from $1^{st}$ October to $21^{st}$ November 2005 from the influent gate of sewage treatment plant. Then the characteristics of sewage were investigated. It was found that the daily values of flow rate and concentrations of sewage components showed a defined profile. The highest and lowest peak values were observed during $11:00{\sim}13:00$ hours and $05:00{\sim}07:00$ hours, respectively. Also, it was shown that the concentrations of sewage components were strongly correlated with the absorbance measured at 300 nm of UV. Therefore, the objective of the paper is to develop on-line estimation technique of the concentration of each component in the sewage using accumulated profiles of sewage, absorbance, and flow rate which can be measured in real time. As a first step, regression analysis was performed using the absorbance and component concentration data. Then a neural network trained with the input of influent flow rate, absorbance, and inflow duration was used. Both methods showed remarkable accuracy in predicting the resulting concentrations of the individual components of the sewage. In case of using the neural network, the predicted value md of the measurement were 19.3 and 14.4 for TSS, 26.7 and 25.1 for TCOD, 5.4 and 4.1 for TN, and for TP, 0.45 to 0.39, respectively.

Optimal Selection of Classifier Ensemble Using Genetic Algorithms (유전자 알고리즘을 이용한 분류자 앙상블의 최적 선택)

  • Kim, Myung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-112
    • /
    • 2010
  • Ensemble learning is a method for improving the performance of classification and prediction algorithms. It is a method for finding a highly accurateclassifier on the training set by constructing and combining an ensemble of weak classifiers, each of which needs only to be moderately accurate on the training set. Ensemble learning has received considerable attention from machine learning and artificial intelligence fields because of its remarkable performance improvement and flexible integration with the traditional learning algorithms such as decision tree (DT), neural networks (NN), and SVM, etc. In those researches, all of DT ensemble studies have demonstrated impressive improvements in the generalization behavior of DT, while NN and SVM ensemble studies have not shown remarkable performance as shown in DT ensembles. Recently, several works have reported that the performance of ensemble can be degraded where multiple classifiers of an ensemble are highly correlated with, and thereby result in multicollinearity problem, which leads to performance degradation of the ensemble. They have also proposed the differentiated learning strategies to cope with performance degradation problem. Hansen and Salamon (1990) insisted that it is necessary and sufficient for the performance enhancement of an ensemble that the ensemble should contain diverse classifiers. Breiman (1996) explored that ensemble learning can increase the performance of unstable learning algorithms, but does not show remarkable performance improvement on stable learning algorithms. Unstable learning algorithms such as decision tree learners are sensitive to the change of the training data, and thus small changes in the training data can yield large changes in the generated classifiers. Therefore, ensemble with unstable learning algorithms can guarantee some diversity among the classifiers. To the contrary, stable learning algorithms such as NN and SVM generate similar classifiers in spite of small changes of the training data, and thus the correlation among the resulting classifiers is very high. This high correlation results in multicollinearity problem, which leads to performance degradation of the ensemble. Kim,s work (2009) showedthe performance comparison in bankruptcy prediction on Korea firms using tradition prediction algorithms such as NN, DT, and SVM. It reports that stable learning algorithms such as NN and SVM have higher predictability than the unstable DT. Meanwhile, with respect to their ensemble learning, DT ensemble shows the more improved performance than NN and SVM ensemble. Further analysis with variance inflation factor (VIF) analysis empirically proves that performance degradation of ensemble is due to multicollinearity problem. It also proposes that optimization of ensemble is needed to cope with such a problem. This paper proposes a hybrid system for coverage optimization of NN ensemble (CO-NN) in order to improve the performance of NN ensemble. Coverage optimization is a technique of choosing a sub-ensemble from an original ensemble to guarantee the diversity of classifiers in coverage optimization process. CO-NN uses GA which has been widely used for various optimization problems to deal with the coverage optimization problem. The GA chromosomes for the coverage optimization are encoded into binary strings, each bit of which indicates individual classifier. The fitness function is defined as maximization of error reduction and a constraint of variance inflation factor (VIF), which is one of the generally used methods to measure multicollinearity, is added to insure the diversity of classifiers by removing high correlation among the classifiers. We use Microsoft Excel and the GAs software package called Evolver. Experiments on company failure prediction have shown that CO-NN is effectively applied in the stable performance enhancement of NNensembles through the choice of classifiers by considering the correlations of the ensemble. The classifiers which have the potential multicollinearity problem are removed by the coverage optimization process of CO-NN and thereby CO-NN has shown higher performance than a single NN classifier and NN ensemble at 1% significance level, and DT ensemble at 5% significance level. However, there remain further research issues. First, decision optimization process to find optimal combination function should be considered in further research. Secondly, various learning strategies to deal with data noise should be introduced in more advanced further researches in the future.

The Comparative Analysis of External Dose Reconstruction in EPID and Internal Dose Measurement Using Monte Carlo Simulation (몬테 카를로 전산모사를 통한 EPID의 외부적 선량 재구성과 내부 선량 계측과의 비교 및 분석)

  • Jung, Joo-Young;Yoon, Do-Kun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2013
  • The purpose of this study is to evaluate and analyze the relationship between the external radiation dose reconstruction which is transmitted from the patient who receives radiation treatment through electronic portal imaging device (EPID) and the internal dose derived from the Monte Carlo simulation. As a comparative analysis of the two cases, it is performed to provide a basic indicator for similar studies. The geometric information of the experiment and that of the radiation source were entered into Monte Carlo n-particle (MCNPX) which is the computer simulation tool and to derive the EPID images, a tally card in MCNPX was used for visualizing and the imaging of the dose information. We set to source to surface distance (SSD) 100 cm for internal measurement and EPID. And the water phantom was set to be 100 cm of the source to surface distance (SSD) for the internal measurement and EPID was set to 90 cm of SSD which is 10 cm below. The internal dose was collected from the water phantom by using mesh tally function in MCNPX, accumulated dose data was acquired by four-portal beam exposures. At the same time, after getting the dose which had been passed through water phantom, dose reconstruction was performed using back-projection method. In order to analyze about two cases, we compared the penetrated dose by calibration of itself with the absorbed one. We also evaluated the reconstructed dose using EPID and partially accumulated (overlapped) dose in water phantom by four-portal beam exposures. The sum dose data of two cases were calculated as each 3.4580 MeV/g (absorbed dose in water) and 3.4354 MeV/g (EPID reconstruction). The result of sum dose match from two cases shows good agreement with 0.6536% dose error.

Evaluation of the quality of Italian Ryegrass Silages by Near Infrared Spectroscopy (근적외선 분광법을 이용한 이탈리안 라이그라스 사일리지의 품질 평가)

  • Park, Hyung-Soo;Lee, Sang-Hoon;Choi, Ki-Choon;Lim, Young-Chul;Kim, Jong-Gun;Jo, Kyu-Chea;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.301-308
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. This study was carried out to explore the accuracy of near infrared spectroscopy (NIRS) for the prediction of chemical parameters of Italian ryegrass silages. A population of 267 Italian ryegrass silages representing a wide range in chemical parameters and fermentative characteristics was used in this investigation. Samples of silage were scanned at 2 nm intervals over the wavelength range 680~2,500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of the highest coefficients of determination in cross validation ($R^2$) and the lowest standard error of cross validation (SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The $R^2$ and SECV were 0.98 (SECV 1.27%) for moisture, 0.88 (SECV 1.26%) for ADF, 0.84 (SECV 2.0%), 0.93 (SECV 0.96%) for CP and 0.78 (SECV 0.56), 0.81 (SECV 0.31%), 0.88 (SECV 1.26%) and 0.82 (SECV 4.46) for pH, lactic acid, TDN and RFV on a dry matter (%), respectively. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation quality of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

A comparison study of 76Se, 77Se and 78Se isotope spikes in isotope dilution method for Se (셀레늄의 동위원소 희석분석법에서 첨가 스파이크 동위원소 76Se, 77Se 및 78Se들의 비교분석)

  • Kim, Leewon;Lee, Seoyoung;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.170-178
    • /
    • 2016
  • Accuracy and precision of ID methods for different spike isotopes of 76Se, 77Se, and 78Se were compared for the analysis of Selenium using quadrupole ICP/MS equipped with Octopole reaction cell. From the analysis of Se inorganic standard solution, all of three spikes showed less than 1 % error and 1 % RSD for both short-term (a day) and long-term (several months) periods. They showed similar results with each other and 78Se showed was a bit better than 76Se and 77Se. However, different spikes showed different results when NIST SRM 1568a and SRM 2967 were analyzed because of the several interferences on the m/z measured and calculated. Interferences due to the generation of SeH from ORC was considered as well as As and Br in matrix. The results showed similar accuracy and precisions against SRM 1568a, which has a simple background matrix, for all three spikes and the recovery rate was about 80% with steadiness. The %RSD was a bit higher than inorganic standard (1.8 %, 8.6 %, and 6.3 % for 78Se, 76Se and 77Se, respectively) but low enough to conclude that this experiment is reliable. However, mussel tissue has a complex matrix showed inaccurate results in case of 78Se isotope spike (over 100 % RSD). 76Se and 77Se showd relatively good results of around 98.6 % and 104.2 % recovery rate. The errors were less than 5 % but the precision was a bit higher value of 15 % RSD. This clearly shows that Br interferences are so large that a simple mathematical calibration is not enough for a complex-matrixed sample. In conclusion, all three spikes show similar results when matrix is simple. However, 78Se should be avoided when large amount of Br exists in matrix. Either 76Se or 77Se would provide accurate results.

An Oceanic Current Map of the East Sea for Science Textbooks Based on Scientific Knowledge Acquired from Oceanic Measurements (해양관측을 통해 획득된 과학적 지식에 기반한 과학교과서 동해 해류도)

  • Park, Kyung-Ae;Park, Ji-Eun;Choi, Byoung-Ju;Byun, Do-Seong;Lee, Eun-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.234-265
    • /
    • 2013
  • Oceanic current maps in the secondary school science and earth science textbooks have played an important role in piquing students's inquisitiveness and interests in the ocean. Such maps can provide students with important opportunities to learn about oceanic currents relevant to abrupt climate change and global energy balance issues. Nevertheless, serious and diverse errors in these secondary school oceanic current maps have been discovered upon comparison with up-to-date scientific knowledge concerning oceanic currents. This study presents the fundamental methods and strategies for constructing such maps error-free, through the unification of the diverse current maps currently in the textbooks. In order to do so, we analyzed the maps found in 27 different textbooks and compared them with other up-to-date maps found in scientific journals, and developed a mapping technique for extracting digitalized quantitative information on warm and cold currents in the East Sea. We devised analysis items for the current visualization in relation to the branching features of the Tsushima Warm Current (TWC) in the Korea Strait. These analysis items include: its nearshore and offshore branches, the northern limit and distance from the coast of the East Korea Warm Current, outflow features of the TWC near the Tsugaru and Soya Straits and their returning currents, and flow patterns of the Liman Cold Current and the North Korea Cold Current. The first draft of the current map was constructed based upon the scientific knowledge and input of oceanographers based on oceanic in-situ measurements, and was corrected with the help of a questionnaire survey to the members of an oceanographic society. In addition, diverse comments have been collected from a special session of the 2013 spring meeting of the Korean Oceanographic Society to assist in the construction of an accurate current map of the East Sea which has been corrected repeatedly through in-depth discussions with oceanographers. Finally, we have obtained constructive comments and evaluations of the interim version of the current map from several well-known ocean current experts and incorporated their input to complete the map's final version. To avoid errors in the production of oceanic current maps in future textbooks, we provide the geolocation information (latitude and longitude) of the currents by digitalizing the map. This study is expected to be the first step towards the completion of an oceanographic current map suitable for secondary school textbooks, and to encourage oceanographers to take more interest in oceanic education.

Mathematical Transformation Influencing Accuracy of Near Infrared Spectroscopy (NIRS) Calibrations for the Prediction of Chemical Composition and Fermentation Parameters in Corn Silage (수 처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 및 발효품질의 예측 정확성에 미치는 영향)

  • Park, Hyung-Soo;Kim, Ji-Hye;Choi, Ki-Choon;Kim, Hyeon-Seop
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.50-57
    • /
    • 2016
  • This study was conducted to determine the effect of mathematical transformation on near infrared spectroscopy (NIRS) calibrations for the prediction of chemical composition and fermentation parameters in corn silage. Corn silage samples (n=407) were collected from cattle farms and feed companies in Korea between 2014 and 2015. Samples of silage were scanned at 1 nm intervals over the wavelength range of 680~2,500 nm. The optical data were recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with several spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation ($R^2{_{cv}}$) and the lowest standard error of cross validation (SECV). Results of this study revealed that the NIRS method could be used to predict chemical constituents accurately (correlation coefficient of cross validation, $R^2{_{cv}}$, ranging from 0.77 to 0.91). The best mathematical treatment for moisture and crude protein (CP) was first-order derivatives (1, 16, 16, and 1, 4, 4), whereas the best mathematical treatment for neutral detergent fiber (NDF) and acid detergent fiber (ADF) was 2, 16, 16. The calibration models for fermentation parameters had lower predictive accuracy than chemical constituents. However, pH and lactic acids were predicted with considerable accuracy ($R^2{_{cv}}$ 0.74 to 0.77). The best mathematical treatment for them was 1, 8, 8 and 2, 16, 16, respectively. Results of this experiment demonstrate that it is possible to use NIRS method to predict the chemical composition and fermentation quality of fresh corn silages as a routine analysis method for feeding value evaluation to give advice to farmers.

Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters (모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시)

  • Kang, Yoojin;Cho, Dongjin;Han, Daehyeon;Im, Jungho;Lim, Joongbin;Oh, Kum-hui;Kwon, Eonhye
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1029-1042
    • /
    • 2021
  • As part of the next-generation Compact Advanced Satellite 500 (CAS500) project, CAS500-4 is scheduled to be launched in 2025 focusing on the remote sensing of agriculture and forestry. To obtain quantitative information on vegetation from satellite images, it is necessary to acquire surface reflectance through atmospheric correction. Thus, it is essential to develop an atmospheric correction method suitable for CAS500-4. Since the absorption and scattering characteristics in the atmosphere vary depending on the wavelength, it is needed to analyze the sensitivity of atmospheric correction parameters such as aerosol optical depth (AOD) and water vapor (WV) considering the wavelengths of CAS500-4. In addition, as CAS500-4 has only five channels (blue, green, red, red edge, and near-infrared), making it difficult to directly calculate key parameters for atmospheric correction, external parameter data should be used. Therefore, thisstudy performed a sensitivity analysis of the key parameters (AOD, WV, and O3) using the simulated images based on Sentinel-2 satellite data, which has similar wavelength specifications to CAS500-4, and examined the possibility of using the products of GEO-KOMPSAT-2A (GK2A) as atmospheric parameters. The sensitivity analysisshowed that AOD wasthe most important parameter with greater sensitivity in visible channels than in the near-infrared region. In particular, since AOD change of 20% causes about a 100% error rate in the blue channel surface reflectance in forests, a highly reliable AOD is needed to obtain accurate surface reflectance. The atmospherically corrected surface reflectance based on the GK2A AOD and WV was compared with the Sentinel-2 L2A reflectance data through the separability index of the known land cover pixels. The result showed that two corrected surface reflectance had similar Seperability index (SI) values, the atmospheric corrected surface reflectance based on the GK2A AOD showed higher SI than the Sentinel-2 L2A reflectance data in short-wavelength channels. Thus, it is judged that the parameters provided by GK2A can be fully utilized for atmospheric correction of the CAS500-4. The research findings will provide a basis for atmospheric correction of the CAS500-4 in the future.

Factor Analysis Affecting on Changes in Handysize Freight Index and Spot Trip Charterage (핸디사이즈 운임지수 및 스팟용선료 변화에 영향을 미치는 요인 분석)

  • Lee, Choong-Ho;Kim, Tae-Woo;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.2
    • /
    • pp.73-89
    • /
    • 2021
  • The handysize bulk carriers are capable of transporting a variety of cargo that cannot be transported by mid-large size ship, and the spot chartering market is active, and it is a market that is independent of mid-large size market, and is more risky due to market conditions and charterage variability. In this study, Granger causality test, the Impulse Response Function(IRF) and Forecast Error Variance Decomposition(FEVD) were performed using monthly time series data. As a result of Granger causality test, coal price for coke making, Japan steel plate commodity price, hot rolled steel sheet price, fleet volume and bunker price have causality to Baltic Handysize Index(BHSI) and charterage. After confirming the appropriate lag and stability of the Vector Autoregressive model(VAR), IRF and FEVD were analyzed. As a result of IRF, the three variables of coal price for coke making, hot rolled steel sheet price and bunker price were found to have significant at both upper and lower limit of the confidence interval. Among them, the impulse of hot rolled steel sheet price was found to have the most significant effect. As a result of FEVD, the explanatory power that affects BHSI and charterage is the same in the order of hot rolled steel sheet price, coal price for coke making, bunker price, Japan steel plate price, and fleet volume. It was found that it gradually increased, affecting BHSI by 30% and charterage by 26%. In order to differentiate from previous studies and to find out the effect of short term lag, analysis was performed using monthly price data of major cargoes for Handysize bulk carriers, and meaningful results were derived that can predict monthly market conditions. This study can be helpful in predicting the short term market conditions for shipping companies that operate Handysize bulk carriers and concerned parties in the handysize chartering market.

Evaluation of Moisture and Feed Values for Winter Annual Forage Crops Using Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 동계사료작물 풀 사료의 수분함량 및 사료가치 평가)

  • Kim, Ji Hea;Lee, Ki Won;Oh, Mirae;Choi, Ki Choon;Yang, Seung Hak;Kim, Won Ho;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.114-120
    • /
    • 2019
  • This study was carried out to explore the accuracy of near infrared spectroscopy(NIRS) for the prediction of moisture content and chemical parameters on winter annual forage crops. A population of 2454 winter annual forages representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation($R^2$) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS calibration model to predict the moisture contents and chemical parameters had very high degree of accuracy except for barely. The $R^2$ and SECV for integrated winter annual forages calibration were 0.99(SECV 1.59%) for moisture, 0.89(SECV 1.15%) for acid detergent fiber, 0.86(SECV 1.43%) for neutral detergent fiber, 0.93(SECV 0.61%) for crude protein, 0.90(SECV 0.45%) for crude ash, and 0.82(SECV 3.76%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of winter annual forage for routine analysis method to evaluate the feed value.