• 제목/요약/키워드: Erosion model

검색결과 587건 처리시간 0.024초

탁수자료를 이용한 GIS 기반의 토사유실량 평가 (Evaluation of GIS-based Soil Erosion Amount with Turbid Water Data)

  • 이근상;조기성
    • 대한공간정보학회지
    • /
    • 제12권4호
    • /
    • pp.75-81
    • /
    • 2004
  • 임하호 유역은 지질 및 토지피복 상태가 토사유실에 취약한 특성을 가지고 있어, 강우발생시 토사가 하천에 유입되어 호소내에 많은 탁수가 발생하고 있다. 본 연구에서는 임하호 탁수 저감대책을 수립하기 위한 기초자료를 생성하기 위해 GIS 기반RUSLE 모형을 이용하여 임하호 유역의 토사유실량을 분석하였다. 2003년도 강우자료를 이용하여 토사유실량을 분석한 결과 5,782,829 ton/yr로 계산되었으며, 소유역별 분석에서는 동부천이 가장 높은 토사유실량을 나타내었다. 또한 태풍매미때의 탁수실측자료를 이용하여 RUSLE 모델로 산정한 토사유실량의 적정성을 평가할 수 있었다.

  • PDF

Numerical Simulation of Erosive Wear on an Impact Sprinkler Nozzle Using a Remeshing Algorithm

  • Xu, Yuncheng;Yan, Haijun
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.287-299
    • /
    • 2016
  • In China, agricultural irrigation water often contains a lot of suspended sediment which may cause the nozzle wear. In this study, a new numerical simulation combing the Discrete Phase Model and a remeshing algorithm was conducted. The geometric boundary deformation caused by the erosion wear, was considered. The weight loss of the nozzle, the node displacement and the flow field were investigated and discussed. The timestep sensitivity analysis showed that the timestep is very critical in the erosion modeling due to the randomness and the discreteness of the erosion behavior. Based on the simulation results, the major deformation of the boundary wall due to the erosion was found at the corners between outlet portion and contraction portion. Based on this remeshing algorithm, the simulated erosion weight loss of the nozzle is 4.62% less compared with the case without boundary deformation. The boundary deformation changes the pressure and velocity distribution, and eventually changes the sediment distribution inside the nozzle. The average turbulence kinetic energy at the outlet orifice is found to decrease with the erosion time, which is believed to change the nozzle's spray performance eventually.

SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석 (Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System)

  • 유동선;안재훈;윤정숙;허성구;박윤식;김종건;임경재;김기성
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

전산유체역학 배관 곡면 침식 모사를 통한 배관 실패 주기 분석 (Analysis of Pipe Failure Period Using Pipe Elbow Erosion Model by Computational Fluid Dynamics (CFD))

  • 남정용;이용규;박건희;이건학;이원보
    • Korean Chemical Engineering Research
    • /
    • 제56권1호
    • /
    • pp.133-138
    • /
    • 2018
  • 2000년대 이후 대두된 안전, 환경 이슈들로 인해 안전 관리는 더욱 더 중요해졌다. 하지만 안전 관리는 많은 경험적 데이터들을 요구하므로 한계점들이 많다. 안전 분야 중 하나인 배관 안전의 경우 현재 배관을 관리하는 시뮬레이션 프로그램들이 존재하지만, 배관 내부 침식에 대해서는 데이터를 얻기 힘들어 시뮬레이션에 반영이 잘 되어있지 않은 상태이다. 이러한 문제점에서 착안해 본 연구에서는 전산유체역학(CFD)을 이용하여 배관 내부의 곡면에 일어나는 침식을 모사하였고, 계산한 침식 속도를 바탕으로 한계상태함수를 이용하여 배관의 실패 주기를 분석하였다. CFD 대상 배관의 경우 여수 산업 단지에 실제로 운영되고 있는 표본을 사용하였다. DPM (Discrete Phase Model)과 부식 모델을 이용하여 CFD 결과로 $3.093mm{\cdot}yr^{-1}$ 수치의 침식 속도를 얻을 수 있었고, 이 결과를 한계상태함수에 적용한 결과 배관에 누출(leak)을 유발하는데 14.2년, 파열(burst)를 유발하는데 28.2년이라는 실패 주기를 얻어낼 수 있었다. 이러한 과정들을 통해 배관 곡면 침식이 배관 안전 진단에 유효한 실패 모드임을 도출할 수 있었다. 본 연구는 실패 연도를 구할 수 있는 방법론들을 제시하여 데이터의 한계점을 극복하고, 배관 안전 진단에 좀 더 정밀하고 발전된 방법을 제시한 것에 대해 의의를 가진다.

물리적 표토침식모형의 개발과 적용 (Development and Application of a Physics-based Soil Erosion Model)

  • 유완식;박준구;양재의;임경재;김성철;박윤식;황상일;이기하
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권6호
    • /
    • pp.66-73
    • /
    • 2017
  • Empirical erosion models like Universal Soil Loss Equation (USLE) models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well utilizing big data related to climate, geography, geology, land use, etc within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models are still powerful tools to distinguish the erosion-prone areas at large scale, but physics-based models are necessary to better analyze soil erosion and deposition as well as the eroded particle transport. In this study a physics-based soil erosion modeling system was developed to produce both runoff and sediment yield time series at watershed scale and reflect them in the erosion and deposition maps. The developed modeling system consists of 3 sub-systems: rainfall pre-processor, geography pre-processor, and main modeling processor. For modeling system validation, we applied the system for various erosion cases, in particular, rainfall-runoff-sediment yield simulation and estimation of probable maximum sediment (PMS) correlated with probable maximum rainfall (PMP). The system provided acceptable performances of both applications.

침식률 측정결과를 사용하는 유사이동모형의 적용 (Application of Sediment Transport Model Using Observed Erosion Rates)

  • 정태성;크랙 죤스;월버트 릭
    • 한국수자원학회논문집
    • /
    • 제37권12호
    • /
    • pp.1033-1041
    • /
    • 2004
  • 현장에서 교란하지 않고 채취한 유사 시료의 침식률을 측정한 결과를 직접 활용하여 침식률을 계산하는 2차원 유사이동 수치모형을 수립하고, 적용성을 검토하기 위하여 미국 팍스강에서 홍수시 유사 수송과정을 모의하였다. 큰 전단응력 하에서도 침식률 측정이 가능한 Sedflume을 사용하여 현장에서 채취된 시료의 침식률이 깊이별, 전단응력 별로 측정되었다. 수치모형은 침식률 측정자료를 모형에서 직접 사용하며, 부유사와 소류사 이동을 모두 고려한다. 개발된 모형은 1차원 직선수로에서 유사수송에 대해 검증되었다. 홍수시 팍스강의 유사 수송과정을 모의하고 부유사 농도의 시간변화에 대해 검증한 결과, 모의결과가 관측치와 잘 일치하여 현장 침식률 값을 직접 사용하는 모형이 효과적임을 확인할 수 있었다.

유역모형을 이용한 금강상류 유역의 유사이송율 산정 (Estimation of Sediment Delivery Ratio in Upper Geum River Basin Using Watershed Model)

  • 김태근;김민주
    • 환경영향평가
    • /
    • 제22권6호
    • /
    • pp.695-703
    • /
    • 2013
  • Soil erosion and sediment delivery ratio(SDR) were estimated by using HSPF model in 3 tributaries of upper stream of Geum river-basin. Meteorological data and other input data were constructed from 2006 to 2011 year by the HSPF model. Flow and suspended solid results were relatively matched with the measurement data through the calibration and validation of the model. Soil erosion was proportional to the amount of rainfall and the area of watershed based on the results of model calibration and validation. SDR in Moojunamdea stream was the highest and one in Cho stream was the lowest. This was effected by the geographical characteristic. SDR was 17.6% Moojunamdea stream, 9.1% Cho stream and 13.2 % Bocheong stream. As the SDR was effected by watershed area and shape factor in this study area.

고랭지 농경지의 토양유실모의를 위한 SWAT 모형의 적용성 평가 (Evaluation of SWAT Applicability to Simulate Soil Erosion at Highland Agricultural Lands)

  • 허성구;김기성;사공명;안재훈;임경재
    • 농촌계획
    • /
    • 제11권4호
    • /
    • pp.67-74
    • /
    • 2005
  • The Doam watershed is located at alpine areas and the annual average precipitation, including snow accumulation, is significant higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. Also, extremely torrential rainfall, such as the typhoons 'RUSA' in 2002 and 'MAEMI' in 2003, caused significant amounts of soil erosion and sediment at the Doam watershed. However, the USLE model cannot simulate impacts on soil erosion of freezing and thaw of the soil. It cannot estimate sediment yield from a single torrential rainfall event. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The R$^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it is found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Two typhoons in 2002 and 2003, MAEMI and RUSA, caused 33% and 22% of total sediment yields at the Doam watershed, respectively. Thus, it is recommended that the SWAT model, capable of simulating snow melt, sediment yield from a single storm event, and long-term weather data, needs to be used in estimating soil erosion at alpine agricultural areas to develop successful soil erosion management instead of the USLE.

산림의 토사유출 방지기능에 관한 연구 (Study on Quantifying Erosion Control Function of Forest)

  • 윤호중;이창우;정용호
    • 한국환경복원기술학회지
    • /
    • 제10권1호
    • /
    • pp.36-43
    • /
    • 2007
  • This study was carried out to know how erosion control function of forests varies as forests develop in watersheds. The erosion control function among the forest welfare functions can be estimated by comparing sediment yield in stocked with non-stocked area. Sediment yield of reservoirs in stocked area were collected from farmland improvement associations. The sediment yields in non-stocked area were using USLE (Universal Soil Loss Equation) in the same reservoirs. Forests' erosion control function estimated by differences of the sediment yield between stocked and non-stocked area was static model because of no consideration on forest aging. Dynamic model was developed to consider a forest stand age. The model comprises the relationship between average forest age in watershed and sediment yield. The amount of sediment yield was different depending mother rocks. It decreased exponentially according to the forest's grow up. In case of igneous rock, the volume of sediment yield $Y_{ig}=1.4431e\;^{0.023x}$(x=average forest age), metamorphic rock $Y_{me}=4.7115e\;^{0.0694x}$, and sedimentary rock $Y_{se}=1.2808e\;^{0.028x}$.

An overview of applicability of WEQ, RWEQ, and WEPS models for prediction of wind erosion in lands

  • Seo, Il Whan;Lim, Chul Soon;Yang, Jae Eui;Lee, Sang Pil;Lee, Dong Sung;Jung, Hyun Gyu;Lee, Kyo Suk;Chung, Doug Young
    • 농업과학연구
    • /
    • 제47권2호
    • /
    • pp.381-394
    • /
    • 2020
  • Accelerated soil wind erosion still remains to date to cause severe economic and environmental impacts. Revised and updated models to quantitatively evaluate wind induced soil erosion have been made for specific factors in the wind erosion equation (WEQ) framework. Because of increasing quantities of accumulated data, the WEQ, the revised wind erosion equation (RWEQ), the wind erosion prediction system (WEPS), and other soil wind erosion models have been established. These soil wind erosion models provide essential knowledge about where and when wind erosion occurs although naturally, they are less accurate than the field-scale. The WEQ was a good empirical model for comparing the effects of various management practices on potential erosion before the RWEQ and the WEPS showed more realistic estimates of erosion using easily measured local soil and climatic variables as inputs. The significant relationship between the observed and predicted transport capacity and soil loss makes the RWEQ a suitable tool for a large scale prediction of the wind erosion potential. WEPS developed to replace the empirical WEQ can calculate soil loss on a daily basis, provide capability to handle nonuniform areas, and obtain predictions for specific areas of interest. However, the challenge of precisely estimating wind erosion at a specific regional scale still remains to date.