• Title/Summary/Keyword: Erosion model

Search Result 589, Processing Time 0.037 seconds

Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure (강우에 의한 사면붕괴에 관한 2차원 수치모의)

  • Regmi, Ram Krishna;Jung, Kwan-Sue;Lee, Gi-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF

Characteristics of the Soil Erosion with the Rainfall and Geotechnical Conditions (강우 및 지반조건에 따른 토양침식 특성)

  • Lee, Myung-Gu;Song, Chang-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.53-58
    • /
    • 2011
  • This study is analyzed the characteristics of the soil erosion with the geotechnical conditions and rainfall conditions, such as the ground slope, the compaction ratio, rainfall intensity and duration of rainfall etc. To this ends, a series of model test are conducted on clayey sands. From the results, the variation of soil loss is analyzed with the geotechnical and the rainfall conditions. The amount of soil loss is decreased as the increase of compaction ratio and is increased as the ground slope, rainfall intensity and the duration of rainfall.

The evaluation of SDR of Yongdam basin using GIS data (GIS 자료를 이용한 용담호 유역의 유사전달률 평가)

  • Lee, Geun-Sang;Kim, Yu-Ri;Hwang, Eui-Ho;Lee, Gwang-Man
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.269-270
    • /
    • 2009
  • This study builds a sediment rating curve using the measured sediment yield and the simulated soil erosion by a GIS-embedded empirical model. Then the structured sediment rating curve is used to determine the SDR on a basin scale in southern Korea. The whole data(year of 2002-2008) are divided into two groups and the first group(year of 2002-2005) is used for calibration, while the other is used for validation. Two cases(rainfall amount and rainfall intensity) are analyzed to consider the rainfall runoff erosivity factor in simulating soil erosion. The results show the derived SDR provides reasonable accuracy and rainfall intensity gives better performance in calculating soil erosion than rainfall amount.

  • PDF

Changes of Electrical Conductivity and Temperature Caused by Cathode Erosion in a Free-Burning Argon Arc

  • Jeon, Hong-Pil;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.255.2-255.2
    • /
    • 2014
  • Electrode erosion is indispensable for atmospheric plasma systems, as well as for switching devices, due to the high heat flux transferred from arc plasmas to contacts, but experimental and theoretical works have not identified the characteristic phenomena because of the complex physical processes. Our investigation is concerned with argon free-burning arcs with anode erosion at atmospheric pressure by computational fluid dynamics (CFD) analysis. We are also interested in the energy flux and temperature transferring to the anode with a simplified unified model of arcs and their electrodes. In order to determine two thermodynamic quantities such as temperature and pressure and flow characteristics we have modified Navier-Stokes equations to take into account radiation transport, electrical power input and the electromagnetic driving forces with the relevant Maxwell equations. From the simplified self-consistent solution the energy flux to the anode can be derived.

  • PDF

GIS-based strategic approach for the estimation of soil erosion (토사유실평가를 위한 GIS기반의 전략적 접근 방법)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Je, Seong-Jin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • This paper presents a strategic approach to effective soil conservation planning and management. To do this, the soil loss model, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion in two basins (Andong and Imha basin), which are distinct in terms of sedimentation in the reservoir of each basin. Areas with high soil erosion potential were analyzed on the basis of land surface characteristics handled by geographic information system (GIS), especially dividing the basin into several sub-basins and then examination was emphasized near the river channel (water-pollutant buffering zone), along which human activities are large. Modeling results show the approach suggested herein provides a basis and guideline for choosing prior erosion risk areas to be examined for soil conservation planning and management. Also, this approach is relatively simple and has wide practical applicability.

  • PDF

Backshore Erosion due to High Swell Waves (너울성고파랑에 기인한 후빈 배후 침식)

  • Kim, Kyu Han;Shim, Kyu Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.5
    • /
    • pp.366-371
    • /
    • 2012
  • High swell has been known for the one of the main causes of beach erosion in the east coast of Korea. In this study, coastal topography changes due to high swells are simulated to find its effect on the backshore by using movable bed experiments and numerical experiments. Sea bottom topographical changes due to various incident waves were investigated using CSHORE model in the numerical experiments. Furthermore, the mechanism and the phenomena of beach erosion due to waves and high swells on the foreshore and backshore were analyzed and compared with movable bed hydraulic experiments.

A Study on the Risk of Propeller Cavitation Erosion Using Convolutional Neural Network (합성곱 신경망을 이용한 프로펠러 캐비테이션 침식 위험도 연구)

  • Kim, Ji-Hye;Lee, Hyoungseok;Hur, Jea-Wook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.129-136
    • /
    • 2021
  • Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert's qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network.

An Experimental Study on the Effect of Erosion Control by Multi-Cylinder Piles (다원주 군파일의 침식방지효과에 관한 실험적 연구)

  • Lee, Sang-Hwa;Jang, Eun-Cheul;Lee, Han-Seung;Jeong, Seok-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • Environmental and safety problems are one of the most important factors in designing coastal wave control structures and maintaining facilities in coastal zone. This study suggests the multi-cylinder piles as a profitable structure for preserving coastal zone as well as controlling the wave effectively. The hydraulic model experiment was performed to investigate the effect of erosion control of the structure. The experimental study was carried out to research the effect of erosion control in the coastal zone for existing a concrete wave breaker and the structure with multi-cylinder piles placing at the same location. As a result multi-cylinder piles reduced erosion at each sides of structure and occured sedimetation at front of structure.

Prediction of Watershed Erosion and Deposition Potentials (유역침식 및 퇴적 잠재능 예측모델 개발)

  • Son, Kwang-Ik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.67-72
    • /
    • 2007
  • A model for predicting potentials of land erosion and deposition over a natural basin was developed based on the mass balance principle. The program was developed based on sediment mass balance principle for each cell in a GIS. Sediment yield from a cell was estimated with RUSLE. The outflow sediment from a cell was calculated by multiplying the sediment yield of the cell by the sediment delivery ratio (SDR) of the cell. The outflow sediment from the upstream cell becomes the incoming sediment of the downstream cell. Therefore the erosion and deposition potential of each cell could be determined from the sediment mass balance i.e., the difference between the incoming and outflow of sediments of each cell. The developed model was validated by comparing the predicted sediment yields for three basins with measured data.

Soil Erosion Modeling in the 3S Basin of the Mekong River Basin

  • Thuy, Hoang Thu;Lee, Giha;Yu, Wansik;Shin, Yongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.21-35
    • /
    • 2017
  • The 3S Basin is described as an important contributor in terms of many aspects in the Mekong River Basin in Southeast Asia. However, the 3S Basin has been suffering adverse consequences of changing discharge and sediment, which are derived from farming, deforestation, hydropower dam construction, climate change, and soil erosion. Consequently, a large population and ecology system that live along the 3S Basin are seriously affected. Accordingly, the calculating and simulating discharge and sediment become ever more urgent. There are many methods to simulate discharge and sediment. However, most of them are designed only during a single rainfall event and they require many kinds of data. Therefore, this study applied a Catchment-scale Soil Erosion model (C-SEM) to simulate discharge and sediment in the 3S Basin. The simulated results were judged with others references's data and the observed discharge of Strung Treng station, which is located in the mainstream and near the outlet of the 3S Basin. The results revealed that the 3S Basin distributes 31% of the Mekong River Basin's total discharge. In addition, the simulated sediment results at the 3S Basin's outlet also substantiated the importance of the 3S Basin to the Mekong River Basin. Furthermore, the results are also useful for the sustainable management practices in the 3S Basin, where the sediment data is unavailable.