• Title/Summary/Keyword: Erector spinae

Search Result 303, Processing Time 0.029 seconds

A Study for Maximal Force Exertion on Upward Slopes (상승면상의 최대 발휘근력에 대한 연구)

  • 최재남;임현교
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.113-119
    • /
    • 1995
  • Many studies have been done to determine the magnitudes of force a man can exert on the objects. However, very little attention has been paid to those In postures on slopes. This paper was aimed to evalute how human work postures would affect the push/pull force and to grasp the relationships between the rectified EMG(REMG) measured at the trunk muscles and force exerted on upward slopes. Two subjects participated in the experiment. The results showed no lineal relationship between the REMG and exerted force at handle. But as the slope and handle height increased, exerted force and muscular stress on erector spinae or rectus abdominis were generally increased. It was notified that since ANOVA did not detect any statistical significance in REMG variation due to dominant muscles, careful application and interpretation of the REMG should be required in analyzing maximal force exertions.

  • PDF

The Effect of back muscle strengthening on the quality of chest compressions during cardiopulmonary resuscitation

  • Yun, Seong-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.157-161
    • /
    • 2019
  • In this paper, the researcher investigated whether strengthening the back muscles affects the quality of chest compressions during cardiopulmonary resuscitation by university students. A total of 50 students majoring in healthcare were included from September 2018 to November. The participants performed chest compressions during cardiopulmonary resuscitation (CPR) for 2 min after back muscle strength was measured. Then, after adequate rest, the participants repeated the back muscle strength measurements and chest compressions after taping the erector spinae muscle. The paired t-test was performed to analyze changes in chest compression quality after taping. As results, taping enhanced back muscle strength and positively affected the depth of chest compressions and the compression to recoil ratio. Taping also increased confidence and lowered fatigability during chest compressions, so the participants preferred being taped while performing chest compressions. Based on these results, taping could help emergency room medical personnel specialized in CPR to enhance the quality of CPR and relieve back pain and fatigability by strengthening the back muscles.

Efficacy of rhomboid intercostal block for analgesia after thoracotomy

  • Okmen, Korgun
    • The Korean Journal of Pain
    • /
    • v.32 no.2
    • /
    • pp.129-132
    • /
    • 2019
  • Regional anesthesia, including central and plane blocks (serratus anterior plane block and erector spinae block), are used for post-thoracotomy pain. The rhomboid intercostal block (RIB) is mainly performed by injection to the upper intercostal muscle plane below the rhomboid muscle. It has been reported to provide analgesia at the T3-T9 levels. The RIB was performed on 5 patients who had been scheduled for thoracotomy. The catheter was advanced in the area under the rhomboid muscle between the intercostal muscles. Postoperative visual analog scale (VAS) scores were observed and each patient's resting VAS score remained below 3 for 48 hours. The RIB has been observed to be a convenient plane block for post-thoracotomy analgesia. We believe that further information from detailed studies is required.

Comparison of hamstring muscles activity between subjects with normal and shortened hamstring muscle during plank exercise

  • Choi, Bo ram
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.2
    • /
    • pp.14-19
    • /
    • 2022
  • Background: Plank exercise (PE) is an effective exercise to enhance lower back stability by strengthening the core and lower limb muscles. However, in patients with a shortened hamstring muscle (HAM), PE may cause abnormal movement of the pelvis and lower back due to HAM hyperactivity. Therefore, the objective of this study was to investigate the effects of PE on the core muscles and HAM in subjects with a shortened HAM. Design: Cross-sectional study. Methods: Subjects were divided into a normal length of HAM group (NHG; 9 subjects) and a shortened length of HAM group (SHG; 14 subjects). The activities of the erector spinae (ES), rectus abdominis (RA), external oblique (EO), and HAM muscles were measured using surface electromyography. Results: The results showed that RA, EO, and ES muscle activities were higher in the NHG than in the SHG; however, no significant differences were detected. Conclusion: HAM activity was significantly higher in the SHG than in the NHG. In subjects with a shortened HAM, PE may hyperactivate the HAM, adversely affecting the pelvis and lower back.

Ultrasound-guided interventions for controlling the thoracic spine and chest wall pain: a narrative review

  • Park, Donghwi;Chang, Min Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.3
    • /
    • pp.190-199
    • /
    • 2022
  • Ultrasound-guided injection is useful for managing thoracic spine and chest wall pain. With ultrasound, pain physicians perform the injection with real-time viewing of major structures, such as the pleura, vasculature, and nerves. Therefore, the ultrasound-guided injection procedure not only prevents procedure-related adverse events but also increases the accuracy of the procedure. Here, ultrasound-guided interventions that could be applied for thoracic spine and chest wall pain were described. We presented ultrasound-guided thoracic facet joint and costotransverse joint injections and thoracic paravertebral, intercostal nerve, erector spinae plane, and pectoralis and serratus plane blocks. The indication, anatomy, Sonoanatomy, and technique for each procedure were also described. We believe that our article is helpful for clinicians to conduct ultrasound-guided injections for controlling thoracic spine and chest wall pain precisely and safely.

Correlation of the Deformation of the Kyphotic Angle with the Fat Infiltration Rate of Multifidus and Erector Spinae in Patients with Acute Osteoporotic Fractures of the Lumbar Spine (급성 골다공증성 요추 골절 환자에서 척추 기립근 및 다열근의 지방침투율과 후만각 변형의 연관 관계)

  • Jun, Deuk Soo;Baik, Jong-Min;Baek, Seung Hyun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.3
    • /
    • pp.208-214
    • /
    • 2021
  • Purpose: Verifying a reliable predictor of the progression of vertebral deformity in patients with acute osteoporotic fractures of the lumbar spine may be useful. A qualitative analysis of the muscle near the spine was performed using magnetic resonance imaging (MRI), and its correlation with a spinal deformity was determined under the hypothesis that the causes of the kyphotic deformity are associated with muscle reduction in the multifidus and erector spinae. Materials and Methods: The study was performed in a retrospective manner using the electronic medical records of patients who presented to the author's institution between January 2007 and March 2018, and were diagnosed with an acute lumbar fracture. The fat infiltration rates of the multifidus and erector spinae were measured using MRI taken at the time of injury, and the mean value was defined as the total fat infiltration rate (TFI). Based on lateral radiographs of the lumbar spine at the one-year follow-up, the loss of height of the vertebral body, the kyphotic angle and the wedge angle were measured. The statistical significance was confirmed by calculating the Pearson correlation coefficient. Results: One hundred twenty-nine patients, of which 30 were male and 99 were female, were examined. The mean age was 71.28 years. The mean T-score was -3.53±0.79 g/cm2, and the mean fat infiltration was 15.20%±11.99%. TFI was positively correlated with age (R=0.373, p<0.001), compression rate (R=0.369, p<0.001), and Cobb's angle (R=0.386, p<0.001) after a one year follow-up, but negatively correlated with the BMD score (R=-0.252, p=0.004). As the fracture progressed to the lower lumbar level, the compression rate (R=-0191, p=0.030) and wedge angle (R=-0.428, p<0.001) at the time of injury tended to decrease. Conclusion: In patients with osteoporotic vertebral fractures, the fat infiltration rate may be an important predictor of conservative treatment. The prognosis of patients with a high-fat infiltration rate should be explained during patient education, and the patients must be monitored closely through short-term outpatient follow-up.

The Effect of Microcurrent Application on Muscle Fatigue of Pes Planus during Gait (미세전류 적용이 편평족을 가진 사람들의 보행근육 피로도에 미치는 영향)

  • Lee, Dae-Hwan;Son, Ho-Hee;Park, Soo-Jin;Kim, Jin-Sang;Kim, Kyoung
    • Journal of Korean Physical Therapy Science
    • /
    • v.18 no.2
    • /
    • pp.51-62
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the effect of microcurrent on fatigue of muscles in people who were flat-footed during gait. Methods: 10 flat-footed university students volunteered to participate in this study. 10 flat-footed subjects were divided into 2 groups, one group was experimental group of 5subjects(This group put on microcurrent induction shoes but the subjects were not able to feel the current.) and the other group was the control group of 5subjects(This group put on the general shoes which were similar in shape but microcurrent was not induced.) to perform double blind test and random sampling. Their gait muscle fatigue of 6 regions (vastus medialis, gastrocnemius, tibialis anterior, biceps femoris, erector spinae, and rectus abdominis muscle.) was measured by EMG MP150, Delsys Inc Boston, USA during walking and then they carried out the Harvard step with a platform (It was a arbitrarily made wooden platform of 100cm long, 50cm wide, 60cm high. They carried out climbing it for one second and descending it for one second by using the Metronome program, total 5minutes) for 5minutes. Right after that, the subjects walked on a treadmill at a speed of 4km/h for 10minutes and then their gait muscle fatigue of 6regions was assessed while they were walking on the ground as equally as before exercise. Results: The experimental group has resulted in lower average differences in gait muscle fatigue before and after exercise than those of the control group average 12.24Hz(P=0.009) at vastus medialis, average 8.52Hz(P=0.016) at gastrocnemius, average 9.16Hz(P=0.009) at tibialis anterior, average 8.66Hz(P=0.047) at biceps femoris, average 7.53Hz(P=0.016) at erector spinae, and average 7.80Hz(P=0.047) at rectus abdominis. All of the assessments of muscles have shown significant difference statistically. Conclusions: This result has shown that the use of micro current could decrease gait muscle fatigue of flat-footed people. It is recommended to use a microcurrent to reduce their gait muscle fatigue.

  • PDF

Effect of 8 Weeks of Schroth Exercise (Three-dimensional Convergence Exercise) on Pulmonary Function, Cobb's Angle, and Erector Spinae Muscle Activity in Idiopathic Scoliosis (8주간의 슈로스운동(3차원적 융합운동)이 특발성 척추 측만증 환자의 폐기능과 Cobb's angle, Scoliometer angle, 척추세움근의 근활성도에 미치는 영향)

  • Park, Sang-Yong;Shim, Jae-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.61-68
    • /
    • 2014
  • In the present study, we aimed to examine the effects of Schroth exercise(three-dimensional convergence exercise) on pulmonary function(vital capacity, and chest expansion), Cobb's angle, scoliometer angle, and erector spinae muscle activity. We examined 40 students with idiopathic scoliosis(Cobb's angle $10^{\circ}$). They were divided into the Schroth and conventional exercise groups, with 20 people in each group. Statistical analysis was performed by using SPSS 18.0 with a paired t-test(pre-post difference) and an independent t-test(between-group differnence). the result of were as follows; 1) After 8 weeks of Schroth exercise, significant improvements were observed in Cobb's angle, rib hump, vital capacity, chest expansion, and right thoracic longissimus muscle activity. 2) After 8 weeks of conventional exercise, a significant improvement was observed only in chest expansion. These findings indicate that the Schroth exercise program improved the Cobb's angle, rib hump, pulmonary function, and sEMG results. Therefore, this study demonstrates the usefulness of the Schroth exercise program for idiopathic scoliosis.

Effects of Foam Roller Application and Movement on EMG responses of Trunk and Lower Limb muscles in Pilates (필라테스 동작시 폼롤러의 적용과 움직임에 따른 몸통근과 하지근의 근전도 반응에 미치는 영향)

  • Jeong, Seo-Hyun;Cho, Sang-Woo;Jung, Sang-Hoon;Kim, Ki-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.905-913
    • /
    • 2018
  • The purpose of this study is to investigate the difference of muscle activity according to application of a foam roller during pilates. The 8 male subjects were selected and quadruped position, bridge, and core control movement of pilates were randomly assigned to 9 movements on a static mat motion, static foam-roller motion, and dynamic foam-roller actions. This program was conducted once at intervals of 1 week. The muscle activity of erector spinae, rectus abdominis, external oblique, gluteus medius, rectus femoris, and biceps femoris were measured and the collected data was analyzed by one-way ANOVA. First, in the quadruped, the rectus abdominis and external oblique, rectus femoris of the dynamic foam-roller actions showed higher muscle activity than the static mat motion and the static foam-roller motion(p <.001), gluteus medius muscle activity was also significantly higher (p <.05). biceps femoris were significantly higher in static foam-roller motions than in static mat-motion and dynamic foam-roller actions(p <.05). Second, biceps femoris muscle activity was highest in dynamic foam-roller actions than static mat-motion and static foam-roller motions during bridge(p <.001). Third, in the sitting core control, the rectus abdominis and gluteus medius of the dynamic foam-roller actions showed higher muscle activity than the static mat motion and the static foam-roller motion(p <.001). and activity of erector spinae muscle was also significantly higher (p <.01). external oblique were significantly higher in static mat-motion than in static foam-roller motions and dynamic foam-roller actions(p <.05). Considering the muscle activity during pilates exercise, it would be more effective to apply the method and difficulty.

Development of Ergonomic Backrest for Office Chairs

  • Kim, Chang Yong;Song, Gyung Yong;Jang, Yeon Sik;Ko, Hyo Eun;Kim, Hee Dong;Park, Gemus;Hwang, Jung Bo;Jung, Hwa Shik
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.151-165
    • /
    • 2015
  • Objective: This study aims to develop and scientifically investigate the efficacy of the Spine S-curve Reactive Backrest that responds to the spine curvature of the user when seated, and maintains and enhances the natural S-curve of the lower back, thereby helping to relieve fatigue, correct posture and prevent spine deformities. Background: The focus of current development, design guidelines and/or standards for office chairs is mainly placed on the chair's dimensions, incline angle, adjusting features and lumbar support. Research and development was called for developing a chair backrest that maintains and improves the S-curve of the full spine. Method: The Spine S-curve Reactive Backrest was ergonomically designed to maintain correct posture and enhance user comfort. When leaned on, the backrest responds to the user's spine line and the whole lower back sits closely against the backrest, thereby aligning the user's lower back and backrest as one to maintain and improve the natural S-curve formation of the spine. In order to evaluate the efficacy of the newly designed chair (new design) and the comparison target (chair), five male college students of standard body type with normal spine curvature were selected as test subjects, and a motion analyzer and electromyography were utilized to measure S-curve and erector spinae muscle activity when seated. Results: The spine S-curve was better maintained and improved when sitting in the new design than in the comparison chair. Particularly notable was the greater displacement gap of the thoracic spine than the cervical spine, and also that of the lumbar more than the thoracic spine, with the increase of the backrest tilting angle. Furthermore, the electromyogram results showed the new design caused a lower fatigue level of the erector spinae muscles compared to the comparison chair, and also earned a higher preference in the subjective opinion results. Conclusion: The newly designed chair in this study responds to the user's spine curvature and maintains and enhances the lower back's natural S-curve, and thereby relieves fatigue, promotes better posture, and helps to prevent spine deformities better than existing office chairs. There is a need to widely introduce and supply this new design. Application: The new design is applicable to office and student chairs, and is expected to improve concentration and work efficiency.