• Title/Summary/Keyword: Erection 공법

Search Result 27, Processing Time 0.021 seconds

The Case Study on the Erection Method of Large Span Structures (대공간 건축물 Erection 공법에 관한 사례 조사 연구)

  • Jung, Hwan-Mok;Lee, Seong-Yeun;Jee, Suck-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.97-104
    • /
    • 2007
  • Recently, the demand of the large span structures has been increasing. The large span structures include such a large scaled structures such as: the shell structure, the space frame structure, the membrane structure and the cable structure, etc. The large span structures are supposed to be confirmed and issued carefully at the initial process of the design besides the construction engineering aspects because of the structural specific cause that should solve and accomodate those large and wide space without columns. In the field of the large span structure construction, the erection construction method has been regarded as a major affected aspects on the construction cost, construction term, and stability. In the field of the large span structure construction, there are various construction method and system could be applied depends on the condition of the construction site and other circumstances such a major construction method as: the element method, the block method, the sliding method, the lift-up method and complexed method, etc. In this study, as the case study of the erection construction method of the large span structures, after survey and study that those existing large span structures construction cases which had applied and adopted the election construction method and analysis and classify into the Uoups by the size, span, ceiling height, structural system in odor to supply and suggest the data for the enhancement and development in the field of the erection construction method as a efficient structural solution of the large span structure construction.

  • PDF

A Study on the Behavior & Buckling Characteristics of Single-Layer Latticed Domes in the Erection Process (단층 래티스 돔의 Erection 중 거동 및 좌굴 특성)

  • Jung, Hwan-Mok;Kim, Cheol-Hwan;Hwang, Dong-Gyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.45-51
    • /
    • 2008
  • A single layer-latticed dome is advantageous for large span structures because it is very stiff despite the light weight of the structure itself. However, this structure becomes easily unstable during erection due to its large size. The Block method is popular with the large span structures. A partial block of the dome is fabricated on the ground and lifted by crane to a designated location of structures. The lifting point selection is very important to create a stable erection and to avoid buckling of members during the erection. The purpose of this study is to analyze the structural behaviors and buckling characteristics according to the lifting point of single-layer latticed domes with triangle network in order to take materials about the safe and economic erection. The conclusions are obtained as follow. 1) The buckling strength of the block part varies with the location of lifting points when it is erected. In case, the height of the dome is lower, the effort of buckling strength of the structure is higher. 2) In buckling strength, the effect of the lifting rope length is smaller than it of the lifting points change.

  • PDF

The Buckling Characteristics of Single-Layer Lamella Domes according to Support Position under Construction (단층라멜라 돔의 시공 중 서포트 위치에 따른 좌굴특성)

  • Kim, Cheol-Hwan;Suk, Chang-Mok;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.67-74
    • /
    • 2010
  • Single layer latticed domes which have a mechanics property, a functional property, a aesthetic property and so on, occupies one part of long span space structures and after this, the using parts will be extended. The frame network pattern of single-layer latticed domes can be infinitely taken into account. The typical network patterns are triangular, square, hexagon, lamella and rib etc. It would take long time and cost too much to erect large roof structures with traditional erection techniques due to require of large number of temporary bracing and supports. The erection of large roof structures requires special techniques. As one of these special techniques is the Step-Up election method that utilizes jack-up supports and this will extremely saves time and cost to erect large roof structures. The objective of this study is to analysis the buckling characteristics of single-layer lamella domes according to the support number and position. From the result of this study, we obtained the fundamental data for the structural engineers who design the temporary support of large roof structures.

  • PDF

Construction of Roof Structure for Pusan Main Stadium (부산종합운동장 주경기장 지붕구조물의 시공)

  • Lee Ju-Young;Ryu Sang-Hyon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.228-231
    • /
    • 2001
  • Construction of roof structure, cable suspended structure, for Pusan main stadium is adapted a lifting method that is VSL lifting system. 5 precesses are practiced for erection of the roof structure including the first lifting process for erection of upper cables and the second lifting process for erection of lower cables. Since all cables of this roof structure with two open speller sockets are determined their length, some cable were wrong length, the roof structure would be unstable. But At complete of erection for the roof structure each cab3e is attained to theoretical tension force with average $4\%$ errors.

  • PDF

The Buckling Characteristics of Single-Layer Lamella Domes according to the Joint Flexibility under Construction (단층라멜라 돔의 시공 중 접합부 강성에 따른 좌굴특성)

  • Suk, Chang-Mok;Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2011
  • Single-layer latticed domes with rigid-joint have an advantage in the construction cost and the aesthetic. But, in single-layer latticed domes, the joints are hard to discriminate between pin-joint and rigid-joint, and consisted of semi-rigid joint in practical. And the erection of large roof structures requires special techniques. As one of these special techniques is the Step-Up erection method. This paper verified buckling characteristics of single-Layer lamella domes according to the Joint flexibility under construction by Step-up method. The results are follows: As erection steps increase, the buckling strength decreases. It is occurred the joint buckling by snap through on the top of dome when the joint flexibility close the rigid. And large tensile stress distribution appeared in circumferential member of bottom boundary when the step of construction is low. As the step of construction increase, large compressive stress distribution showed in the top of dome.

Erection Method for Marine Section of Double Deck Warren Truss in Young Jong Grand Bridge (영종대교 복층 Warren Truss 해상구간 가설공법)

  • Kim Jeong-Woong;Seo Jea-Hwa;Yang Mu-Seok;Yuk Il -Dong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.232-239
    • /
    • 2001
  • Young Jong Grand Bridge is approach traffic road of New Inchon International Airport which covers hub airport function in northeast asia. The total span length of this bridge is $4,420{\cal}m$ and this main bridge type is, the first in the world, Double Deck Self Anchored Suspension Bridge, designed as double deck systems to be arranged by road and railroad. Approach bridges to be connected with main span also are composed double deck steel truss and steel box girder to consider a continuity with this span. Our company erected $1,375{\cal}m$(about 60,000tons) of double deck steel truss bridge type which is composed by 6 traffic lane on upper deck and 4 traffic lane and Double track railroad on lower deck. The original installation method of this bridge was planed to install about 75 meters bridge blocks to use floating crane, after temporary bent was constructed between permanent piers. But this method which had to construct many temporary bents in the sea had the matter that construction periods can become lengthen and construction cost can be risen. To overcome the uncertainty to ensure high qualify of bridge and economic project execution, our company developed new bridge erection method to assure both quality control and economic construction work. The new erection method which was developed by us was one that could transport and install long bridge block, $120{\cal}m$ unit at a time and that temporary bent was not required. We hope that this paper is used as technical data which will erect bridge in the western sea and others marine region.

  • PDF

Experimental Investigation of Rotation-Up Erection for Keel Truss Spatial Structures (Rotation-Up 공법에 의한 킬 트러스 대공간 구조물의 Erection 실험에 관한 연구)

  • Kim, Cheol-Hwan;Chae, Won-Tak;Baek, Ki-Youl;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.57-66
    • /
    • 2013
  • There are a number of construction methods to build spatial structures such as erection method, Element method, Block method, Sliding method, Lift-up method and Push-up method. These methods are uneconomical and low accuracy, and require long construction duration because of a need of a scaffold or a tower crane to build spatial roof frame. In this study, the construction method to erect a truss structure was proposed as an economical and easy installation method. The proposed method has end hinges of keel truss and winches with horizontal cable. This method makes safe and accurate production and reduces construction duration because trusses are built on the floor or supporter. The goal of this study is to verify the validity of construction method by building scale model using the proposed method.

Time Reduction Effect Analysis of SMART Frame for Long Span and Heavy Loaded Logistics Buildings (SMART 프레임의 공기단축 효과 분석 - 대형 물류창고 사례 -)

  • Kim, Doyeong;Ji, Woomin;Lim, Jeeyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2022
  • As online commerce increases, the construction of large logistics buildings worldwide is exploding. Most of these buildings have the characteristics of long span and heavy loaded and use precast concrete components, a pin joint structure, for rapid construction. However, due to construction safety and structural stability requirements, the pin joint structure has many limitations in terms of the erection of the PC member, which increases the time and cost. A structural frame connected with steel joints between precast concrete components, called a SMART frame, has been developed, which addresses these constraints and risks. However, the effect of the appllication of a SMART frame on the time aspect has not been analysed. The study is a time reduction effect analysis of a SMART frame for long span and heavy loaded logistics buildings. For this study, the authors select a case site erected using existing PC components, and compare the time reduction with the SMART frame erection simulations. Through this analysis, it was found that a time reduciton about 4 months, approximately 48% of the conventional PC installation period could be achieved. If the SMART frame is applied when carrying out future large-scale logistics building projects, it can be expected to have the effect of significantly shortening the construction period compared to the conventional method.

Specificity of Prefounded Column for Top-Down Construction (Top-Down 공사용 선기초기둥의 특성)

  • Kang, Seung-Ryong;Rhim, Hong-Chul;Kim, Seung-Weon;Park, Dae Young;Kim, Dong-Gun;Song, Jee-Yun;Jeong, Mee-Ra
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.135-139
    • /
    • 2008
  • For deep basement construction of buildings downtown, the usage of Top-Down Method is increasing as much as ever from strong demand. One of the essential elements for the construction by Top Down Method is the pre-founded columns, which are installed in the ground and on which a building is installed. The fact that the pre-founded columns are placed in the ground makes them susceptible to its plumbness; this aspect distinguishes pre-founded columns from general columns. However, there are no criteria for erection tolerance. Therefore, field-measured-data concerning out-of-plumb of pre-founded columns in the construction field should be accumulated and investigated so that criteria and specifications for the erection tolerance of pre-founded columns may be established through the understanding of its aspects. In this paper, we investigate out-of-plumb of pre-founded columns for the construction case and analyze its aspects, and propose considerations for design and construction phase.

  • PDF

Rubber Packing Damage Test Report for Procedure of Forebody Erection in the Sea (해상탑재 DAM공법에 따른 선체외판 선저부위의 도막박리 및 밀림방지 대책)

  • Kim Young-Nam;Im Myung-Soo;Yea Weon-Bae
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.144-150
    • /
    • 2005
  • The size of ship is being larger than the past in the shipping industry thanks to the increased quantity of goods transported by ship. Therefore, HHIC (Hanjin Heavy industries & Construction co., LTD) invented innovative construction method, so called 'DAM', to build a ship which is longer than the length of the HHIC's dry dock. On Erection at the sea by the application of DAM Method, Squeezing & Detachment of A/F film may occur as a result of the wave and the constriction between A/F film pre-applied on the side shell and DAM's Rubber Packing. Thus, the test for finding the minimum curing time of A/F film was performed to protect Squeezing & Detachment of A/F film on the hull. To verify the soundness of paint and to find the optimum condition during the erection period of the DAM, laboratory test was carried out under no immersion condition through the application of various coatings on the Rubber Packing. And two methods were selected from the results of laboratory test for actual MOCK-UP Test. In addition, the test for the film profile per temperature of silicone A/F coat and the film Squeezing was performed.

  • PDF