• Title/Summary/Keyword: Erbium-Doped Fiber Amplifier (EDFA)

Search Result 47, Processing Time 0.023 seconds

Characterization of Erbium-Doped Fiber Amplifier (에르븀 첨가 광섬유증폭기의 특성측정)

  • 한정희;이재승;주무정;심창섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.5
    • /
    • pp.45-51
    • /
    • 1993
  • An erbium doped fiber amplifier(EDFA) pumped by aingle 1.48$\mu$m LD was fabricated, and its gain and noise characteristics were measured. As a signal source, 1548 nm wavelength DFB LD was used. The small signal net gain of the EDFA module was 21.8 dB with maximum gain coefficient 0.7dB/mW for the erbium fiber length of 17.6 m, the pump power of 58 mW, and an input signal power of -25 dBm, respectively. The saturation power of the EDFA was 1 dBm for the input signal power of -5 dBm and the noise figure, measured by using an optical spectrum analyzer, was 5.8 dB for the input signal power of -40 dBm.

  • PDF

A Theoretical and Experimental Investigation into Pair-induced Quenching in Bismuth Oxide-based Erbium-doped Fiber Amplifiers

  • Jung, Min-Wan;Shin, Jae-Hyun;Jhon, Young-Min;Lee, Ju-Han
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2010
  • The pair-induced quenching (PIQ) effect in a highly doped bismuth oxide-based erbium-doped fiber amplifier (EDFA) was theoretically and experimentally investigated. In the theoretical investigation, the bismuth oxide-based EDFA was modeled as a 6-level amplifier system that incorporated clustering-induced concentration quenching, cooperative up-conversion, pump excited state absorption (ESA), and signal ESA. The relative number of paired ions in a highly doped bismuth oxide EDF was estimated to be ~6.02%, determined by a comparison between the theoretical and the experimentally measured gain values. The impacts of the PIQ on the gain and the noise figure were also investigated.

Analysis of Laser Weldment Distortion in the EDFA LD Pump Packaging (광신호 증폭기 EDFA LD 펌프 패키징 레이저 용접부 변형 해석)

  • Gang, Dae-Hyeon;Son, Gwang-Jae;Yang, Yeong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.139-146
    • /
    • 2001
  • This paper presents a study on heat transfer and residual distortion analysis of laser welded EDFA(Erbium Doped Fiber Amplifier) LD(Laser Diode) Pump using the finite element method. In the production process of LD Pump in light-wave communication system, ferrule and saddle are welded by Nd-YAG laser. These parts experience thermal and mechanical effect during heating and cooling cycle with the laser welding. Thus distortion happens in the laser-welded packaging, and it makes an error in detecting the light signal translate through optical fiber in LD Pump. The amount of final displacement produced by the laser welding is predicted using the finite element method. And the optimal shape of saddle is proposed with the results of numerical analyses to minimize the displacement.

  • PDF

Impact of the Gain-saturation Characteristic of Erbium-doped Fiber Amplifiers on Suppression of Atmospheric-turbulence-induced Optical Scintillation in a Terrestrial Free-space Optical Communication System

  • Jeong, Yoo Seok;Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2021
  • We have evaluated the suppression effect of atmospheric-turbulence-induced optical scintillation in terrestrial free-space optical (FSO) communication systems using a gain-saturated erbium-doped fiber amplifier (EDFA). The variation of EDFA output signal power has been measured with different amounts of gain saturation and modulation indices of the optical input signal. From the measured results, we have found that the peak-to-peak power variation was decreased drastically below 2 kHz of modulation frequency, in both 3-dB and 6-dB gain compression cases. Then, the power spectral density (PSD) of optical scintillation has been calculated with Butterworth-type transfer function. In the calculation, different levels of atmospheric-turbulence-induced optical scintillation have been taken into account with different values of the Butterworth cut-off frequency. Finally, the suppression effect of optical scintillation has been estimated with the measured frequency response of the EDFA and the calculated PSD of the optical scintillation. From our estimated results, the atmospheric-turbulence-induced optical scintillation could be suppressed efficiently, as long as the EDFA were operated in a deeply gain-saturated region.

Gain bandwidth characteristics of erbium-doped Fiber amplifiers for long-haul transmissions (에르븀 첨가 광섬유 증폭기의 장거리 전송에 따른 이득 평탄화 특성)

  • 정희상;이동한;정윤철;안성준;조흥근
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.181-185
    • /
    • 1998
  • Gain characteristic of concatenated erbium-doped fiber amplifiers(EDFA) are studied with a recirculating EDFA loop. For a non-flat gain EDFA, the 3 dB gain bandwidth was reduced to 6 nm after the 20th EDFA. However, for an optimized gain flattened EDFA, in a simple configuration, the 5 dB gain bandwidth was found to be 9nm, even after the 100th EDFA, corresponding to 8000km transmission. This results suggest that the simple optimized flat gain amplifier could be a good candidate for ultra-long distance wavelength division multiplexed transmissions.

  • PDF

Spectral gain variation characteristics of the silica-based erbium doped fiber amplifier in the 1545-1557 nm wavelength region (에르븀 첨가 광증폭기의 파장에 따른 이득 특성 측정 및 분석)

  • 김향균;박서연;이동호;박창수
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.209-212
    • /
    • 1997
  • Spectral gain variation characteristics of the silica-based erbium doped fiber amplifiers is investigated in the 1545-1557 nm wavelength region. For a given length of the erbium doped fiber, the gain($G_0$) with minimum spectral gain variation is uniquely determined. The spectral gain imbalance DG is nearly proportional to the difference between G0 and the operating gain(G) with the proportional constant of 0.1-0.2 dB/dB. For the gain flattened EDFA at the input power of -20 dBm/ch. and the gain of 21 dB, the output power and the optical signal to noise variations after 12 cascaded EDFAs were 5 dB and 3 dB, respectively.

  • PDF

Experimental Evaluation of Frequency Characteristics of Gain-saturated EDFA for Suppression of Signal Fluctuation in Terrestrial Free-space Optical Communication Systems

  • Yoo Seok, Jeong;Chul Han, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Frequency characteristics of gain-saturated erbium-doped fiber amplifier (EDFA) are experimentally evaluated to mitigate the optical signal fluctuation induced by atmospheric turbulence in terrestrial freespace optical communication systems. Here, an acousto-optic modulator (AOM) is used to emulate optical signal fluctuations induced by atmospheric turbulence. The waveform which is generated in proportion to the refractive-index structural parameters is used to drive the AOM at various periodic frequencies. Thus, the dependence of the signal fluctuation suppression on the frequency is evaluated. The experiment is conducted using a periodic frequency sweep of the AOM driving voltage waveform and signal input power variation of the amplifier. It is observed that a low periodic frequency and high input signal power effectively suppress the optical signal fluctuation. This study evaluates the experimental results from the high-pass filter and gain-saturation characteristics of the EDFA.

Characteristics of Random Jitter in Analog Fiber-Optic Links Employing a Mach-Zehnder Modulator and an EDFA (마하-젠더 광 변조기와 EDFA를 사용한 아날로그 광통신 링크의 랜덤 지터 특성)

  • Yoon, Young-Min;Lee, Min-Young;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.96-102
    • /
    • 2009
  • We investigate the characteristics of RJ (random jitter) in an analog fiber-optic link employing a MZM (Mach-Zehnder modulator) and an EDFA (Erbium-doped fiber amplifier). RJ has been measured using two methods, one of which derived from the noise spectrum of a RF spectrum analyzer and the other from the histogram data of a sampling oscilloscope. If the optical power and/or the RF power input to the MZM increase, RJ decreases due to the output signal power increase. For the optical link without EDFA, the minimum RJ is about 1 ps at an RF power of 10 dBm and an optical power of 8 dBm measured using the noise spectrum method. For the optical link with an EDFA, RJ decreases toward a jitter floor as the EDFA gain increases. If the gain increases further, it has been observed that RJ increases from the minimum. If the EDFA gain is fixed, RJ is smaller for the case of larger optical input power. As the EDFA gain increases, RJ reduction rate becomes greater for the case of lower optical input power.

  • PDF

Highly Utilized Fiber Plant with Extended Reach and High Splitting Ratio Based on AWG and EDFA Characteristics

  • Syuhaimi, Mohammad;Mohamed, Ibrahim
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.786-796
    • /
    • 2013
  • In this paper, we propose a hybrid time-division multiplexing and dense wavelength-division multiplexing scheme to implement a cost-effective and scalable long-reach optical access network (LR-OAN). Our main objectives are to increase fiber plant utilization, handle upstream and downstream flow through the same input/output port, extend the reach, and increase the splitting ratio. To this end, we propose the use of an arrayed waveguide grating (AWG) and an erbium-doped fiber amplifier (EDFA) in one configuration. AWG is employed to achieve the first and second objectives, while EDFA is used to achieve the third and fourth objectives. The performance of the proposed LR-OAN is verified using the Optisystem and Matlab software packages under bit error rate constraints and two different approaches (multifiber and single-fiber). Although the single-fiber approach offers a more cost-effective solution because service is provided to each zone via a common fiber, it imposes additional losses, which leads to a reduction in the length of the feeder fiber from 20 km to 10 km.

Performances of Erbium-Doped Fiber Amplifier Using 1530nm-Band Pump for Long Wavelength Multichannel Amplification

  • Choi, Bo-Hun;Chu, Moo-Jung;Park, Hyo-Hoon;Lee, Jong-Hyun
    • ETRI Journal
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The performance of a long wavelength-band erbium-doped fiber amplifier (L-band EDFA) using 1530nm-band pumping has been studied. A 1530nm-band pump source is built using a tunable light source and two C-band EDFAs in cascaded configuration, which is able to deliver a maximum output power of 23dBm. Gain coefficient and noise figure (NF) of the L-band EDFA are measured for pump wavelengths between 1530nm and 1560nm. The gain coefficient with a 1545nm pump is more than twice as large as with a 1480nm pump. It indicates that the L-band EDFA consumes low power. The noise figure of 1530nm pump is 6.36dB at worst, which is 0.75dB higher than that of 1480nm pumped EDFA. The optimum pump wavelength range to obtain high gain and low NF in the 1530nm band appears to be between 1530nm and 1540nm. Gain spectra as a function of a pump wavelength have bandwidth of more than 10nm so that a broadband pump source can be used as 1530nm-band pump. The L-band EDFA is also tested for WDM signals. Flat Gain bandwidth is 32nm from 1571.5 to 1603.5nm within 1dB excursion at input signal of -10dBm/ch. These results demonstrate that 1530nm-band pump can be used as a new efficient pump source for L-band EDFAs.

  • PDF