• Title/Summary/Keyword: Er:YAG lasing

Search Result 6, Processing Time 0.024 seconds

High Power Continuous-Wave and Graphene Q-switched Operation of Er:YAG Ceramic Lasers at ~1.6 ㎛

  • Wang, Yong;Chen, Hao;Shen, Deyuan;Zhang, Jian;Tang, Dingyuan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.5-9
    • /
    • 2013
  • We report on high-power continuous-wave operations of an Er:YAG ceramic laser in-band pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm. With an output coupler of 10% transmission, the ceramic laser yielded 16.7 W of continuous-wave output at 1645 nm for 28.8 W of incident pump power, corresponding to a slope efficiency of 61.0% with respect to the incident pump power. The lasing wavelength switched to 1617 nm when output couplers of > 20% transmission were used. Up to 16.2 W of 1617 nm output was generated for 33.0 W of incident pump power, corresponding to a slope efficiency of 51.8%. Graphene Q-switched operation of Er:YAG cermic laser at 1645 nm was also demonstrated with stable pulses of 30-74 kHz repetition rates and 1.5-6.4 ${\mu}s$ pulse widths.

Effect of Er:YAG lasing on the dentin bonding strength of two-step adhesives (2단계 접착제의 상아질 결합강도에 대한 Er:YAG 레이저 조사 영향)

  • Song, Byeong-Choon;Cho, Young-Gon;Lee, Myung-Seon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.409-418
    • /
    • 2011
  • Objectives: The purpose of this study was to compare the microshear bond strength (${\mu}$SBS) and bonding interfaces of two-step total-etching and self-etching adhesive systems to three etch types of dentin either the acid etched, laser etched or laser and acid etched. Materials and Methods: The occlusal dentinal surfaces of thirty human molars were used. They were divided into six groups: group 1, 37% $H_3PO_4$ + Single Bond 2 (3M ESPE); group 2, Er:YAG laser (KEY Laser 3, KaVo) + Single Bond 2; group 3, Er:YAG laser + 37% $H_3PO_4$ + Single Bond 2; group 4, Clearfil SE Primer + Bond (Kuraray); group 5, Er:YAG laser + Clearfil SE Bond; group 6, Er:YAG laser + Clearfil SE Primer + Bond. The samples were subjected to ${\mu}$SBS testing 24 hr after bonding. Also scanning microscopic evaluations were made on the resin-dentin interfaces of six specimens. Results: The ${\mu}$SBS of group 2 was significantly lower than that of groups 1 and 3 in Single Bond 2 (p < 0.05). There were significant differences among the uSBS of groups 4, 5, and 6 in Clearfil SE Bond (p < 0.05). Very short and slender resin tags were observed in groups 2 and 5. Long and slender resin tags and lateral branches of tags were observed in groups 3 and 6. Conclusions: Treatment of dentin surface using phosphoric acid or self-etching primer improved the adhesion of Er:YAG lased dentin.

Comparative Study of the Ablation Rates of Er: YAG Laser Irradiation on Dentin and Enamel (Er:YAG 레이저를 이용한 법랑질과 상아질의 절삭율 연구)

  • Kim, Kun-A;Ahn, Yong-Woo;Ko, Myung-Yun;Park, June-Sang
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • The purpose of this study was to examine the ablation rate of Er: YAG laser irradiation on dentin and enamel and to observe the microscopic structures of cavities formed after ablation of enamel and dentin in using a bur and cavities formed after ablation using laser. Er:YAG laser irradiated at 200 mJ, 250mJ, 300mJ at the frequency of 20Hz, 15Hz. The following results were obtained : 1. The ablation rate of dentin groups at power of 3 W-6 W was about $1.103{\sim}2.639mm^3/sec$ and there were no significant differences between power of 4.5 W$\sim$6 W. 2. The ablation rate of enamel groups at power of 3 W-6 W was about $0.413{\sim}0.969mm^3/sec$ and there were no significant differences between power of 4 W$\sim$6 W. 3. With SEM examination of the cavity surface treated with the conventional high speed bur revealed relatively flat appearance almost covered with a debris like smear layer. 4. With SEM examination of the lased surface of dentin groups revealed no smear layer and no debris and openings of dentinal tubules were clearly opened. But the lased surfaces of the groups over 3 W were irregular and particles were loosely attached on it. 5. With SEM examination of the lased surface of enamel groups revealed severely destructed surface at the 6 W group and melting drop materials at the 3 W group. But the lased surface of 4 W group revealed clearly ablated surface. Therefore when cutting teeth using Er:YAG laser, the lasing power which can make effective ablation rate and minimize the thermal effect could be 3W at dentin and 4W at enamel. But, further studies and additional data collection will be necessary for appropriate lasing condition of Er:YAG laser.

ANALYSIS OF ER:YAG LASER IRRADIATION ON CUTTING EFFICACY AND TEMPERATURE CHANGES OF DENTIN (Er:YAG 레이저의 상아질 삭제효과 및 이에 따른 온도변화)

  • Im, Kwang-Ho;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.32-44
    • /
    • 2001
  • The purpose of this study was to investigate the effects of Er : YAG laser on cutting efficacy and temperature changes of dentin. We used the dentin specimens of human premolars and molars which contain the physiologic saline and maintain the pulpal pressure in dentinal tubules. Each specimen was exposed to Er : YAG laser with non-contact handpiece type delivery system under different treatment condition of irradiation energy, pulse repetition rate, and exposure time. Two procedures were conducted by the presence of water flow during lasing. The specimens were grouped by thickness of dentin. We investigated the cavity pattern, volume, and temperature change of dentin specimen to determine the cutting efficacy and temperature rise of Er : YAG laser, and obtained following results. 1. Cutting volume of dentin was increased by increasing the irradiation energy, pulse repetition rate, and exposure time(P<0.05). 2. Margins of abulated cavities were sharp and clean and floors of cavities were conical in shape and showing smooth surfaces. Upper diameter of abulated cavities were increasing as laser parameter of irradiation energy, pulse repetition rate, and exposure time were increased. A few cracks were observed on abulated surfaces under treatment condition of laser parameter with 150mJ, 5Hz, and 5sec. 3. Temperature was increased as laser parameter of irradiation energy, pulse repetition rate, and exposure time were increased, and temperature rise was decreased as dentin thickness was increased(P<0.05). 4. Temperature rise was decreased under water flow compared with no water flow during laser exposure(P<0.05). From these results, we think that the method of using a Er:YAG laser would be effective and safe in cutting dentin for clinical application.

  • PDF

Ablation Rate and Intrapulpal Temperature by Addition of Water Spray During Er:YAG Laser Irradiation (Er:YAG laser를 이용한 치아삭제시 물분사량이 삭제율과 치수내 온도변화에 미치는 영향)

  • Kim, Jung-Moon;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.375-381
    • /
    • 2005
  • Er:YAG laser has been considered a promising alternative to dental drill and many researches indicate that adjustment to variable parameters, including water flow rate, pulse energy and pulse repetition rate, can be made to improve ablation ability and efficiency of the laser. Of these parameters, addition of water spray during irradiation has been thought to ablate dental hard tissue more rapidly and safely. The purpose of this study was to investigate tooth ablation amount by Er:YAG laser irradiation as related to varied water flow rates added and, ultimately to find the most effective water flow rate for ablation. In addition, the temperature change of pulp chamber during irradiation was also monitored on the irradiated and opposite pulpal walls, respectively. An Er:YAG laser with contact mode was employed. Extracted human molars were split into two pieces for ablation experiment. Pulse energies of 200 and 300 mJ with a pulse repetition rate of 20 Hz and 5 water flow rates (1.6, 3.0, 5.0, 7.0, and 10.0 ml/min) were applied. Each irradiation was performed for 3 seconds. According to these parameters, experimental groups were divided into 10 subgroups which consisted of 5 specimens. For temperature experiment, another 5 tooth-specimens were prepared in the manner that pulp chamber was open through access cavity preparation and two temperature-measuring probes were placed respectively on the irradiated and the opposite walls of pulp chamber. From the experiment on ablation amount related to different water flow rates, it was shown that the least water flow rate of 1.6 ml/min ablated more than any other water flow rates (p<0.000). When the irradiation for 3 seconds, combined with the pulse repetition time of 20Hz and the water flow rate of 1.6 ml/min was done to tooth specimen, the temperature rise was not noticeable both on the irradiated and the opposite pulpal walls (less than 3$^{\circ}C$) and there was no significant difference in temperature rise between the two pulse energies, 200 and 300 mJ. From the results of this study, it is suggested that tooth ablation with Er:YAG laser can be done effectively and safely at a energy between 200 and 300 mJ/pulse and a pulse repetition rate of 20 Hz when the lasing is conjugated with the water flow rate of 1.6ml/min.

Effect of Pulse Energy and Pulse Repetition Rate at the Identical Total Power During Enamel Ablation Using an Er:YAG Laser (Er:YAG 레이저를 이용한 치아 삭제시 동일출력에서 펄스에너지와 조사반복률의 영향)

  • Won, Jung-Yeon;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • The objectives of this study was to investigate the amount of tooth ablation and the change of intrapulpal temperature by Er:YAG laser as it relates to pulse energy and pulse repetition rate at the identical power and, thereby, to reveal which of the two parameters strongly relates with ablation efficiency and intrapulpal temperature. Extracted healthy human molar teeth were sectioned into two pieces and each specimen was irradiated within the combination of pulse energy and pulse repetition time at the same power of 3W; $300mJy{\times}10Hz$ group, $200mJy{\times}15Hz$ group, and $150mJy{\times}20Hz$ group. Each specimen comprised ten tooth specimens. A laser beam with conjunction of a water flow rate of 1.6 ml/min was applied over enamel surfaces of the specimens during 3 seconds and the ablation amount was determined by difference in weight before and after irradiation. To investigate the temperature change in the pulp according to the above groups, another five extracted healthy human molar teeth were prepared. Each tooth was embedded into resin block and the temperature-measuring probes were kept on the irradiated and the opposite walls in the dental pulp during lasing. When the power was kept constant at 3W, ablation amount increased with pulse energy rather than pulse repetition rate (p=0.000). Although intrapulpal temperature increased with pulse repetition rate, there were no significant differences among the groups and between the irradiated and the opposite pulpal walls, except at a condition of $150y{\times}20Hz$ (p=0.033). Conclusively, it is suggested that ablation efficacy is influenced by pulse energy rather than pulse repetition rate.