• Title/Summary/Keyword: Equivalent plate model

Search Result 145, Processing Time 0.024 seconds

A Study on Welding Deformation of Thin Plate Block of PCTC by Using Equivalent Load Method (등가하중법을 이용한 PCTC 박판 블록 용접변형에 관한 연구)

  • Kang, Sung-Koo;Yang, Jong-Soo;Kim, Ho-Kyung;Heo, Joo-Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.106-111
    • /
    • 2011
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plates should be carefully joined to minimize the welding deformation. In this study, the welding deformation of PCTC which use a thin plate is investigated by using equivalent load method. The analysis model of 10, 11, 12, upper and garage deck is composed of thin plate of 6mm which is susceptible to welding heat. For two different welding sequences, the welding deformation is calculated and its trend is investigated. The influence of gravity on welding deformation is studied.

  • PDF

Welding Deformation Analysis of Plates Using the Inherent Strain-based Equivalent Load Method (고유변형률 기반 등가하중법을 이용한 판의 용접변형 해석)

  • Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.39-46
    • /
    • 2010
  • IIn this study, used is the equivalent loading method based on the inherent strain to predict the welding deformation of panel members. Equivalent loads are computed from the inherent strain distribution around weld line, and then applied for the linear finite element analysis. Thermal deformation of panel members can be, of course, carried out through the rigorous thermal elasto-plastic analysis procedure but it is not practical in applying to predicting the welding deformation of large structures such as blocks found in a ship structure from view of computing time. The present equivalent load approach has been applied to flat plate model to verify the present approach, and to several curved plate models having the curvature in the welding direction to investigate the effect of the longitudinal curvature upon the weld-induced deformation. The results are compared with those by thermal elasto-plastic analysis. As far as the present results are concerned, it can be said that the present approach shows good agreement with the results by welding experiment and the rigorous thermal elasto-plastic analysis. The present approach has been also applied to predict the welding deformation of panel block as for application illustration to practical model.

A Study on the Dynamic Analysis of One-way Hollow Slab Using Equivalent Plate Element (등가플레이트 요소를 이용한 일방향 중공슬래브의 동적해석에 관한 연구)

  • Kang, Joo-Won;Lim, Jun-Ho;Chae, Seoung-Hun;Kim, Gee-Cheol;Seok, Keun-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.447-454
    • /
    • 2012
  • Considering that the weight of a hollow slab system is not increased with an incremental increase in its thickness, and that the flexural stiffness of a hollow slab is not significantly lower than that of a general slab, there has been a growing need for hollow slab system, because long span structures are in great demand. In a long span structure, the problem of vibration of floor slabs frequently occurs, and the dynamic characteristics of a hollow slab system are quite different from the conventional floor system. It is required to investigate the safety and the serviceability of hollow slab. Therefore, there exists a necessity for accurate vibration analysis. Hollow slab should be modeled by refined mesh for accurate vibration analysis. For the efficiency of the Eigenvalue Analysis, an equivalent plate slab model when can relatively precisely represent the dynamic behavior of a one-way hollow slab system is used. In conclusion, equivalent plate models relatively precisely presented the dynamic characteristics of one-way hollows.

Study on the Mechanical Behavior of Welded part in thick Plate (후판 용접부의 역학적 특성 -유한요소법에 의한 3차원 열탄소성 해석-)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.250-258
    • /
    • 1992
  • In order to clarify the mechanical behavior of welding crack and to evaluate the mechanical characteristics of welded parts in thick plate, it is very important to accurately predict the welding deformation and residual stress including transient state before welding. In this paper, the theory of a three-dimensional elasto-plastic problem for the analysis of mechanical phenomenon of welding joint on the plate is developed into an efficient and accurate method based on the finite element method, and then several examples are considered by using the proposed model. The results of numerical analyses are discussed in the viewpoint of the mechanical characteristics of the distribution of three-dimensional welding residual stresses, plastic strains and their production mechanism on the thick plate.

  • PDF

구조 형태에 따른 1차원 보와 2차원 평판 구조 해석 비교

  • Gang, Yu-Jin;Sim, Ji-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.274-278
    • /
    • 2015
  • There are different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their assigned mission. One of the fundamental analyses during the design of the aircraft is the structural analysis. The structural analysis becomes more complicated and needs more computations because of the on-going complex aircrafts' structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, i.e., an equivalent beam or plate analysis for an aircraft wing. It is necessary to assess the boundary between the one-dimensional beam analysis and the two-dimensional plate theory for an accurate structural analysis. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimesional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and analytic solution.

  • PDF

Equivalent Scattering Area Model of Optical Dot Gain (광학적 망점확대의 상당산란면적 모델에 관한 연구)

  • 강상훈
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 1994
  • To investigate relations between Grain-shape of plate and Dot-Gain in the lithography, Printing plates were made by Mechanical Grain, Brush Grain and Electrolytic Grain method.Fine multi-grain by electrolytic method of them resulted in less Dot-grain on the paper, more damping water on the none image part of printing plate.

  • PDF

A new four-unknown equivalent single layer refined plate model for buckling analysis of functionally graded rectangular plates

  • Ibrahim Klouche Djedid;Sihame Ait Yahia;Kada Draiche;Emrah Madenci;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.517-530
    • /
    • 2024
  • This paper presents a new four-unknown equivalent single layer (ESL) refined plate theory for the buckling analysis of functionally graded (FG) rectangular plates with all simply supported edges and subjected to in-plane mechanical loading conditions. The present model accounts for a parabolic variation of transverse shear stress over the thickness, and accommodates correctly the zero shear stress conditions on the top and bottom surfaces of the plate. The material properties are supposed to vary smoothly in the thickness direction through the rules of mixture named power-law gradation. The governing equilibrium equations are formulated based on the total potential energy principle and solved for simply supported boundary conditions by implementing the Navier's method. A numerical result on elastic buckling using the current theory was computed and compared with those published in the literature to examine the accuracy of the proposed analytical solution. The effects of changing power-law exponent, aspect ratio, thickness ratio and modulus ratio on the critical buckling load of FG plates under different in-plane loading conditions are investigated in detail. Moreover, it was found that the geometric parameters and power-law exponent play significant influences on the buckling behavior of the FG plates.

Welding deformation analysis based on improved equivalent strain method considering the effect of temperature gradients

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.157-173
    • /
    • 2015
  • In the present study, the existing equivalent stain method is improved to make up for its weaknesses. The improved inherent strain model is built considering more sophisticated three dimensional constraints which are embodied by six cubic elements attached on three sides of a core cubic element. From a few case studies, it is found that the inherent strain is mainly affected by the changes in restraints induced by changes of temperature-dependent material properties of the restraining elements. On the other hand, the degree of restraints is identified to be little influential to the inherent strain. Thus, the effect of temperature gradients over plate thickness and plate transverse direction normal to welding is reflected in the calculation of the inherent strain chart. The welding deformation can be calculated by an elastic FE analysis using the inherent strain values taken from the inherent strain chart.

Efficient Analysis of Biaxial Hollow Slab (2방향 중공슬래브의 효율적인 해석)

  • Park, Hyun-Jae;Kim, Hyun-Su;Park, Yong-Koo;Hwang, Hyun-Sik;Lee, Ki-Jang;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.362-367
    • /
    • 2008
  • Recently, the use of biaxial hollow slab is increased to reduce noise and vibration of the floor slab. Therefore, an efficient method for the vibration analysis of biaxial hollow slab is required to describe dynamic behavior of biaxial hollow slab. A finite element analysis is one of the method to analyze the biaxial hollow slab. It is necessary to use a refined finite element model for an accurate analysis of a floor slab with an effects of the hollow shape. But it would take a significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Thus the proposed method uses equivalent plate model in this study. Dynamic analyses of an example structure subjected to walking loads were performed to verify the efficiency and accuracy of the proposed method.

  • PDF

Numerical simulation of flow around an equivalent plate for model-ship correlation (모형선과 실선의 상관관계 추정을 위한 등가평판의 수치해석 및 적용)

  • Kim, Yeong-Min;Park, Mi-Yeon;Lee, Hui-Beom
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.109-112
    • /
    • 2012
  • 선박의 저항을 추정하는 일은 선박설계에 있어 가장 기본적인 작업이다. 그러나 선박의 크기는 매우 크기 때문에 일반적으로 모형선 실험을 통해 선박의 저항을 추정한다. 이 때, 모형선 실험은 Froude 수를 기준으로 수행하게 되는데 이 때문에 모형선과 실선의 Reynolds 수가 서로 다른 영역에 놓이게 된다. 따라서 모형선 실험에서 얻어진 데이터를 실선에 그대로 적용할 수 없기 때문에 모형선-실선 저항추정법을 사용하게 된다. 본 연구에서는 이러한 모형선-실선 저항추정법에 사용되고 있는 2 차원 외삽법을 살펴보고 이 기법에 사용되고 있는 ITTC 마찰저항곡선을 등가평판 주위의 유동장 해석결과와 비교하였으며 ITTC 마찰저항곡선에 대해 고찰하였다.

  • PDF