• Title/Summary/Keyword: Equivalent material properties

Search Result 335, Processing Time 0.027 seconds

A design of the annular induction electromagnetic pump by equivalent circuit modelling (등가회로 해석법에 의한 환단면형 유도전자펌프의 설계)

  • Kim, H.R.;Hong, S.H.;Hwang, J.S.;Min, B.T.;Nam, H.Y.;Cho, M.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1431-1434
    • /
    • 1994
  • The annular induction electromagnetic pump with maximum flowrate of $60{\ell}/min$ for the sodium coolant system of liquid metal fast breeder reacters has been designed using the equivalent circuit method. The final optimum values of geometrical and electromagnetic parameters were obtained for an annular induction pump from the relation of the electrical variables giving the developing force to the fluid and the pressure drops between both sides of the pump. The physical properties of the core, coil condoctor materials in the high temperature and pump cooling systems under operation have been taken into account in the design of the pump. The structural material were also selected considering the reaction with sodium and the magnetic field distortion.

  • PDF

Electrical properties of a composite piezoelectric transducer (복합 압전 트랜스듀서의 전기적 특성)

  • 안형근;한득영
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 1996
  • A composite piezoelectric ceramic transducer is fabricated with three piezoelectric ceramic disk vibrators and two sheets of thin insulator. Its equivalent circuit is derived from the Mason's model of a thickness-driven piezoelectric vibrator. When the electric input near its fundamental resonance frequency is applied to the center vibrator and the output voltages across the left and the right vibrators are connected in series to the resistor loads, the load characteristics at resonance frequencies under the various resistor loads and the frequency characteristics near the resonance frequency without load are investigated. Furthermore, symbolic expressions for input impedances, voltage ratios, resonance frequencies, and bandwidths are derived. The data calculated from those symbolic expressions are agreed well with the measurement data.

  • PDF

Research of the impact of material and flow properties on fluid-structure interaction in cage systems

  • Mehmet Emin Ozdemir;Murat Yaylaci
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • This paper investigates the mechanical behavior of full-scale offshore fish cages under hydrodynamic loads. To simulate different cases, different materials were used in the fish cage and analyzed under different flow velocities. The cage system is studied in two parts: net cage and floating collar. Analyses were performed with the ANSYS Workbench program, which allows the Finite Element Method (FEM) and Computational Fluid Dynamics (CFD) method to be used together. Firstly, the fish cage was designed, and adjusted for FSI: Fluid (Fluent) analysis. Secondly, mesh structures were created, and hydrodynamic loads acting on the cage elements were calculated. Finally, the hydrodynamic loads were transferred to the mechanical model and applied as a pressure on the geometry. In this study, the equivalent (von Mises) stress, equivalent strain, and total deformation values of cage elements under hydrodynamic loads were investigated. The data obtained from the analyses were presented as figures and tables. As a result, it has been shown that it is appropriate to use all the materials examined for the net cage and the floating collar.

Characterization of the Material Properties of Sheet Metal for Auto-body at the High Strain Rate Considering the Pre-strain Effect (예비변형률 효과를 고려한 고변형률 속도에서의 차체용 강판의 물성 특성)

  • Kim, Seok-Bong;Lim, Ji-Ho;Huh, Hoon;Lim, Jong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.204-210
    • /
    • 2004
  • Most auto-body members fabricated by the sheet metal forming process. During this process the thickness and material properties of the sheet metal are changed with the residual stress and plastic strain. This paper deals with the material properties of the sheet metal at the high strain rate considering the pre-strain effect. Specimens are selected from sheet metals for outer panels and inner members, such as SPCEN, SPRC45E, SPRC35R and EZNCD. The specimens are prepared with the pre-strain of 2, 5 and 10 % by tensile elongation in Instron 5583, which could be equivalent to the plastic strain in sheet metal forming. High speed tensile tests are then carried out with the pre-stained specimens at the strain rate of 1 to 100/sec. The experimental result informs that the material properties are noticeably influenced by the pre-strain when the yield stress of the specimens is moderate as SPCEN, SPRC35R and EZNCD. The result also demonstrates that the ultimate tensile strength as well as the yield stress is increased as the amount of the pre-strain is increased.

Shaking table study of a 2/5 scale steel frame with new viscoelastic dampers

  • Chang, K.C.;Tsai, M.H.;Lai, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.273-286
    • /
    • 2001
  • Viscoelastic (VE) dampers have shown to be capable of providing structures with considerable additional damping to reduce the dynamic response of structures. However, the VE material appears to be sensitive to the variations in ambient temperature and vibration frequency. To minimize these effects, a new VE material has been developed. This new material shows less sensitivity to variations in vibration frequency and temperature. However, it is highly dependent on the shear strain. Experimental studies on the seismic behavior of a 2/5 scale five-story steel frame with these new VE dampers have been carried out. Test results show that the structural response can be effectively reduced due to the added stiffness and damping provided by the new type of VE dampers under both mild and strong earthquake ground motions. In addition, analytical studies have been carried out to describe the strain-dependent behavior of the VE damper. The dynamic properties and hysteresis behavior of the dampers can be simulated by a simple bilinear model based on the equivalent dissipated energy principle proposed in this study.

The Study on the Improvement of Mechanical Performance due to Change in Temperature and Sputtering by $SiO_2/Ag$ Material of Bonded Dissimilar Materials with Cylindrical Shape (원통형 이종 접합 소재의 $SiO_2/Ag$스퍼터 증착과 온도 변화에 따른 기계적 특성에 관한 연구)

  • Lee, Seung-Hyun;Choi, Seong-Dae;Lee, Jung-Hyong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • The material used in this study is dielectric and ferrite. Because of the unique characteristics of the material, it is easily exposed to external shocks and pressure, which cause damage to the product. However, after being processed under high-temperature environment repeatedly, the mechanical strength of the product is greatly increased due to the change of the electrical properties. In this paper, dielectric and bonded ferrite material was tested for the material properties. The equipment for this experiment was produced and tested to allow Cylindrical and Three-dimensional geometry of the product for the vacuum deposition. For Cylindrical shape of the product, in order to obtain the equivalent film thickness, the device is constructed in a vacuum chamber which gives arbitrary revolving and rotating capability. The electrical performance of the product is obtained through this process as well. However, as mentioned above, with repeating processes under high temperature and exposure to external environment, the product is easy to be broken. This experiment has enabled us to find out a stable condition to apply the communication of the RF high frequency to each of the core elements, such as Ferrite and Dielectric which is then used for the mechanical strength of the Raw material, hetero-junction material, Hetero-junction Ag Coating material and hetero-junction Ag Coating SiO2 Coating material respectively.

Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle (다방향으로 입체 보강된 복합재 노즐의 열탄성해석)

  • 유재석;김광수;이상의;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

A numerical tension-stiffening model for ultra high strength fiber-reinforced concrete beams

  • Na, Chaekuk;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.1-22
    • /
    • 2011
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber-reinforced concrete (UHSFRC) structures subject to monotonic loadings is introduced. Since engineering material properties of UHSFRC are remarkably different from those of normal strength concrete and engineered cementitious composite, classification of the mechanical characteristics related to the biaxial behavior of UHSFRC, from the designation of the basic material properties such as the uniaxial stress-strain relationship of UHSFRC to consideration of the bond stress-slip between the reinforcement and surrounding concrete with fiber, is conducted in this paper in order to make possible accurate simulation of the cracking behavior in UHSFRC structures. Based on the concept of the equivalent uniaxial strain, constitutive relationships of UHSFRC are presented in the axes of orthotropy which coincide with the principal axes of the total strain and rotate according to the loading history. This paper introduces a criterion to simulate the tension-stiffening effect on the basis of the force equilibriums, compatibility conditions, and bond stress-slip relationship in an idealized axial member and its efficiency is validated by comparison with available experimental data. Finally, the applicability of the proposed numerical model is established through correlation studies between analytical and experimental results for idealized UHSFRC beams.

A Study on the Welding Properties of SM570TMC Steel Plate (SM570TMC 강재의 용접부 특성에 관한 연구)

  • Im, Sung Woo;Chang, In Hwa;Chung, Woo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.665-675
    • /
    • 2006
  • With building structures becoming higher and longer-spanned, the need for high-strength and reliable steel is increasing. For this reason, the SM570TMC steel plate was developed. Despite its excellent mechanical properties, however, its welding properties, which are well-known to be superior to those of other equivalent steel plates, have not been verified yet. In this study, welding specimens fabricated via SA and FCA welding, with two domestic welding materials and one Japanese welding material in site welding conditions, were evaluated.

Mechanical Characteristics of Nano-Structured Tool Steel by Ultrasonic Cold Forging Technology

  • Suh, Chang-Min;Song, Gil-Ho;Suh, Min-Soo;Pyoun, Young-Shik;Kim, Min-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.35-40
    • /
    • 2006
  • Ultrasonic cold forging technology (UCFT) utilizing ultrasonic vibration energy is a method to induce severe plastic deformation to a material surface, therefore the structure of the material surface becomes a nano-crystal structure from the surface to a certain depth. It improves the mechanical properties; hardness, compressive residual stress, wear and fatigue characteristics. Applying UCFT to a rolling process in the steel industry is introduced in this study. First, the UCFT specimens of a tool steel (SKD-61/equivalent H13) are prepared and tested to verify the effects of the UCFT in a variety of mechanical properties, the UCFT is applied to the trimming knives in a cold rolling process. It has been determined that UCFT improves the mechanical properties effectively and becomes a practical method to improve productivity and reliability by about two times compared with the conventionally treated tooling in the trimming process in a cold rolling line.

  • PDF