• Title/Summary/Keyword: Equivalent continuum plate model

Search Result 3, Processing Time 0.02 seconds

Equivalent Continuum Modeling Methods for Flat Corrugated Panels (평판형 주름판넬에 대한 등가 연속체 모델링기법)

  • 이상윤;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.43-50
    • /
    • 2000
  • The corrugated panels are the prime candidate structure for the floor, roof and wall of Korean high speed train. The equivalent continuum modeling approach panels can be used for the efficient design and evaluation of their structural characteristics. The equivalent continuum models, derived from the true complex corrugated panels, should have the same structural behavior as the original structures have. This paper briefly reviews three representative continuum modeling methods: the static analysis method and two plate-models based on modal analysis methods (MAM). These methods are evaluated through some numerical examples by comparing the natural frequencies and static deflections. It is observed that the plate-model based on Rayleigh-Ritz method seems to provide the best results when used in conjunction with the cantilever-type boundary conditions. The equivalent elastic constants of various corrugated panels, depending on the changes in their configurations, are tabulated for efficient use in structural design.

  • PDF

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Magnetic Field Analysis Due to the Remanent Magnetization Distributed on a Ferromagnetic Thin Plate by using Equivalent Magnetic Models and Material Sensitivity (등가 자기모델과 매질민감도법을 이용한 강자성체 판에 분포하는 영구자화에 기인한 자기장 신호분석)

  • Jeung, Gi-Woo;Kim, Dong-Wook;Kim, Dong-Hun;Yang, Chang-Seob;Chung, Hyun-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.100-105
    • /
    • 2010
  • For predicting magnetic signals due to the remanent magnetization distributed on a ferromagnetic ship hull, this paper presents an efficient methodology for solving inverse problems, where the material sensitivity analysis based on the continuum mechanics is combined with the equivalent magnetic models. To achieve this, the 3D magnetic charge model and the magnetic dipole moment model are introduced and material sensitivity formulae applicable to each equivalent model are derived. The formulae offer the first-order gradient information of an objective function with respect to the variation of the magnetic charge or magnetic dipole and so an optimal solution can be easily obtained regardless of the number of design variables. To validate the proposed method, the numerical results are comparison with the real measurements of a mock-up model.