• Title/Summary/Keyword: Equivalent Vibration System

Search Result 247, Processing Time 0.023 seconds

A Vibration Analysis Model for Bellows Using Reduced Degree Of Freedom in the Vehicle Exhaust System (자유도 저감을 이용한 자동차 배기시스템의 벨로우즈 진동해석 모델)

  • 김대현;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.659-663
    • /
    • 1997
  • In this paper, a simplified vibration analysis model for bellows was presented to avoid excessive effort required for shell model. To reduce degree of freedom, bellows was modelled using one dimensional beam element. The equivalent mass and stiffness matrices were obtained based upon Guyan reduction process. The results were compared with the confirmed results, which were in good agreement.

  • PDF

Vibration Control of Tower Structure under Wind Load (풍하중에 의한 타원형 구조물의 진동 제어)

  • Hwang Jae-Seung;Kim Yun-Seok;Joo Seok-Jun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.427-430
    • /
    • 2002
  • The present parer outlines the system identification and vibration control performance of air traffic control tower of Yangyang international airport with tuned mass damper(TMD). From the free vibration test, natural frequency, damping ratio and mode shape of tower are obtained and these values are compared with the values from numerical analysis. In the vibration control test to evaluate the vibration control performance, equivalent damping ratio increased by tuned mass damper are obtained in case the TMD is operated as passive mode. Damping ratio of tower evaluated from free vibration test is about $1.0{\%}$. It is very low value than damping ratio recommended in general code. Damping ratio of passive mode is about $5{\%}$. These equivalent damping ratio increased by TMD is enough to enhance the serviceability of tower structure under wind load.

  • PDF

The Error Involved in the Equivalent Electroacoustic Circuit Approach for the Estimation of the Absorption Coefficient of Multiple Layer Perforated Plate Systems (다중 다공판 시스템의 흡음계수 계산에 있어서 전기음향등가회로법의 오류)

  • Lee, Dong-Hoon;Kwon, Yeung-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.890-895
    • /
    • 2002
  • The equivalent electroacoustic circuit approach has been conventionally used for estimating the absorption coefficient of a single layer perforated plate system. When the single layer system is extended to the multiple layer ones, however, it is found that an analogy error has been involved in the equivalent electroacoustic parallel circuit approach proposed by previous investigators. The analogy error is demonstrated by the corrected equivalent electroacoustic circuit approach in this study.

  • PDF

The Error Involved in the Equivalent Electroacoustic Circuit Approach for the Estimation of the Absorption Coefficient of Multiple Layer Perforated Plate Systems (다중 다공판 시스템의 흡음계수 계산에 있어서 전기음향등가회로법의 오류)

  • Lee, Dong-Hoon;Kim, Wook;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.387.2-387
    • /
    • 2002
  • The equivalent electroacoustic circuit approach has been conventionally used for estimating the absorption coefficient of a single layer perforated plate system. When the single layer system is extended to the multiple layer ones, however, it is found that an analogy error has been involved in the equivalent electroacoustic parallel circuit approach proposed by previous researchers. The analogy error is demonstrated by the corrected equivalent electroacoustir circuit approach proposed en this study.

  • PDF

Vibration Control of a Structure Using the Toggle-Rotational Inertia Damper (토글-회전관성댐퍼를 이용한 구조물의 진동제어)

  • Hwang, Jae-Seung;Choi, Rak-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.586-590
    • /
    • 2006
  • This paper presents a new vibration control device by which the mass and damping of a structure is increased equivalently. The vibration control system, named toggle-rotational inertia-viscous damper, can be utilized effectively in applications of small structural drift. Numerical analysis shows that because the relative drift of a structure can be effectively amplified by the toggle system, the device has a great performance in the vibration control without the increase of the damper capacity and size. It is also observed that vibration control effects is caused by the increase of equivalent mass and damping due to the rotational inertia and damping of the device.

  • PDF

A Study on the Stability Analysis and Non-linear Forced Torsional Vibration for the Dngine Shafting System with Viscous Damper (점성댐퍼를 갖는 엔진 축계의 안정성 해석 및 비선형 비틀림강제진동)

  • 박용남;하창우;김의간;전효중
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.282-287
    • /
    • 1996
  • The non-linear torsional vibrations of the propulsion shafting system with viscous damper are considered. The motion is modeled by non-linear differential equations of second order. the equivalent system is modeled by two mass softening system with Duffing's oscillator. The steady state response of a equivalent system is analyzed for primary resonance only. Harmonic balance method as a non-linear vibration analysis technique is used. Jump phenomena are explained. The primary unstable region obtained by the Mathieu equation is investigated. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisons with both data, it was confirmed that Duffing's oscillator can be used as a analysis method in the modeling of the propulsion shafting system attached viscous damper with non-linear stiffness.

  • PDF

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

A Study on the Dynamics of Train Using Equivalent System (등가계를 적용한 열차의 동적거동에 관한 연구)

  • 조동현;임진수
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.117-122
    • /
    • 2000
  • The dynamics of train has recently been analysed in many cases and very complex nonlinear creep theories have been developed by many engineers. But much calculation time is spent and latest complex creep theories cannot be adapted in train analysis. In this study efficient and fast train analysis method was suggested. Many of degree of freedom were reduced in multi-vehicle system using equivalent system and fast calculation time was achieved. And the accuracy of equivalent system method was proved by linear and nonlinear dynamic analysis.

  • PDF

Equivalent linearization of a Friction Damper and Brace System (마찰감쇠기-가새 시스템의 등가선형화 기법에 관한 연구)

  • Min, Kyung-Won;Park, Ji-Hun;Kim, Dae-Hyun;Kim, Hyung-Seop;Moon, Byoung-Wook;Kang, Sang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.750-753
    • /
    • 2005
  • An equivalent linearization technique based on Rayleigh peak distribution for friction damper and brace system (FDBS) under stochastic excitation is proposed. For verification, shaking table test of a small scale 3-story building model with the FDBS is conducted for various slip moment levels. Using experimental result, equivalent linearization of the FDBS is conducted based on Rayleigh peak distribution, which is compared with measured peak distribution. For comparative study, model updating technique is applied based on identified modal properties. Finally, complex modal analysis and time history analysis for the obtained equivalent linear systems are conducted and compared with experimental result

  • PDF

A Performance Analysis and Experiment of Viscous Torsional Vibration Damper for High Speed Engine Shaft System (고속엔진축계용 점성 비틀림진동감쇠기의 성능해석 및 실험)

  • Yang, B.S.;Jeong, T.Y.;Kim, K.D.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.98-105
    • /
    • 1997
  • In general, crankshafts which are used in internal combustion reciprocating engines are subjects to high torsional vibration. Therefore, a damper is often used to minimize the torsional vibration in reciprocating engines. In this paper, in order to investigate damping performance of viscous damper, the real effective viscosity and complex damping coefficient of silicone oil, and the effective inertia moment of inertia ring are calculated considering the relative motion between damper casing and inertia ring. Based on these results multi-cylinder shaft is modeled into equivalent 2-degree of freedom system and optimum condition is estimated by calculating the amplification factor of viscous damper. Also the test damper was manufactured according to the result of theoretical investigation, the performance and durability was ascertained through experimental examination.

  • PDF