• Title/Summary/Keyword: Equivalent Ultimate Strength

Search Result 74, Processing Time 0.029 seconds

Prediction of Ultimate Strength of Concrete Deep Beams with an Opening Using Strut-and-Tie Model (스트럿-타이 모델에 의한 개구부를 갖는 깊은 보의 극한강도 예측)

  • 지호석;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.189-194
    • /
    • 2001
  • In this study, ultimate strength of concrete deep beams with an opening is predicted by using Strut-and-Tie Model with a new effective compressive strength. First crack occurs around an opening by stress concentration due to geometric discontinuity. This results in decreasing ultimate strength of deep beams with an opening compared with general deep beams. With fundamental notion that ultimate strength of deep beam with an opening decreases as a result of reduction in effective compressive strength of a concrete strut, an equivalent effective compressive strength formula is proposed in order to reflect ultimate strength reduction due to an opening located in a concrete strut. An equivalent effective compressive strength formula which can reflect opening size and position is added to a testified algorithm of predicting ultimate strength of concrete deep beams. Therefore, ultimate strength of concrete deep beam with an opening is predicted by using a simple and rational STM algorithm including an equivalent effective compressive strength formula, not by finite element analysis or a former complex Strut-and-Tie Model

  • PDF

Compression tests of cold-formed channel sections with perforations in the web

  • Kwon, Young Bong;Kim, Gap Deuk;Kwon, In Kyu
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.657-679
    • /
    • 2014
  • This paper describes a series of compression tests performed on cold-formed steel channel sections with perforations in the web (thermal studs) fabricated from a galvanized steel plate whose thickness ranged from 1.0 mm to 1.6 mm and nominal yield stress was 295 MPa. The structural behavior and performance of thermal studs undergoing local, distortional, or flexural-torsional buckling were investigated experimentally and analytically. The compression tests indicate that the slits in the web had significant negative effects on the buckling and ultimate strength of thin-walled channel section columns. The compressive strength of perforated thermal studs was estimated using equivalent solid channel sections of reduced thickness instead of the studs. The direct strength method, a newly developed and adopted alternative to the effective width method for designing cold-formed steel sections in the AISI Standard S100 (2004) and AS/NZS 4600 (Standard Australia 2005), was calibrated to the test results for its application to cold-formed channel sections with slits in the web. The results verify that the DSM can predict the ultimate strength of channel section columns with slits in the web by substituting equivalent solid sections of reduced thickness for them.

Ultimate Compressive Strength Analysis of TMCP High Tensile Steel Plates with HAZ Softening(2nd Report) (HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 제 2 보)

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 1991
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The softening region which has lower yield stress than base metal is located to prevent cracking in the conventional high tensile steel. Also, thermo mechanical control process(TMCP) steel with low carbon equivalent has the softening region which occurs in the heat affected zone when high heat input weld is carried out. The softening region in the high tensile steel gives rise to serious effect on structural strength such as tensile strength, fatigue strength and ultimate strength. In order to make a reliable structural design using high tensile steel plates, the influence of the softening on plate strength should be evaluated in advance. In the previous paper, the authors discussed the ultimate compressive strength of 50HT steel square plates with softening region. In this paper, the ultimate compressive strength with varying the yield stress of softening region and the aspect ratio of the plate is investigated by using the elasto-plastic large deformation finite element method.

  • PDF

Case studies on the probabilistic characteristics of ultimate strength of stiffened panels with uniform and non-uniform localized corrosion subjected to uniaxial and biaxial thrust

  • Cui, Jinju;Wang, Deyu;Ma, Ning
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.97-118
    • /
    • 2019
  • Based on Nonlinear Finite Element Analysis (NFEA), this paper focuses on the bi-axial ultimate strength of typical bottom structures under corrosion. On one hand, uniform and not simultaneous corrosion across different structures is introduced, and surrogate models by Gaussian Process (GP) are built for both longitudinal and transverse cases individually, and corresponding probabilistic characteristics are investigated; meanwhile, corrosion effects on interaction between bi-axial stresses at ultimate state are studied. On the other hand, non-uniform localized pitting corrosion of normally distributed circular shapes is introduced, and different pitting corrosion densities are considered; structural bi-axial ultimate strengths under pitting corrosion are studied, and the results are compared with that from equivalent uniform corrosion; the probabilistic characteristics of structural ultimate strength in life cycle are studied; finally, the ultimate strength under randomly distributed pitting corrosion is compared with results from normally distributed pitting and uniform corrosion under various boundary conditions.

Effective Length of Reinforced Concrete Columns in Braced Frames

  • Tikka, Timo K.;Mirza, S. Ali
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.99-116
    • /
    • 2014
  • The American Concrete Institute (ACI) 318-11 permits the use of the moment magnifier method for computing the design ultimate strength of slender reinforced concrete columns that are part of braced frames. This computed strength is influenced by the column effective length factor K, the equivalent uniform bending moment diagram factor $C_m$ and the effective flexural stiffness EI among other factors. For this study, 2,960 simple braced frames subjected to short-term loads were simulated to investigate the effect of using different methods of calculating the effective length factor K when computing the strength of columns in these frames. The theoretically computed column ultimate strengths were compared to the ultimate strengths of the same columns computed from the ACI moment magnifier method using different combinations of equations for K and EI. This study shows that for computing the column ultimate strength, the current practice of using the Jackson-Moreland Alignment Chart is the most accurate method for determining the effective length factor. The study also shows that for computing the column ultimate strength, the accuracy of the moment magnifier method can be further improved by replacing the current ACI equation for EI with a nonlinear equation for EI that includes variables affecting the column stiffness and proposed in an earlier investigation.

Ultimate Strength of Concrete Barrier by the Yield Line Theory

  • Jeon, Se-Jin;Choi, Myoung-Sung;Kim, Young-Jin
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • When the yield line theory is used to estimate the ultimate strength of a concrete barrier, it is of primary importance that the correct assumption is made for the failure mode of the barrier. In this study, a static test was performed on two full-scale concrete barrier specimens of Korean standard shape that simulate the actual behavior of a longitudinally continuous barrier. This was conducted in order to verify the failure mode presented in the AASHTO LRFD specification. The resulting shape of the yield lines differed from that presented in AASHTO when subjected to an equivalent crash load. Furthermore, the ultimate strengths of the specimens were lower than the theoretical prediction. The main causes of these differences can be attributed to the characteristics of the barrier shape and to a number of limitations associated with the classical yield line theory. Therefore, a revised failure mode with corresponding prediction equations of the strength were proposed based on the yield lines observed in the test. As a result, a strength that was more comparable to that of the test could be obtained. The proposed procedure can be used to establish more realistic test levels for barriers that have a similar shape.

Effects of Specimen Length on Flexural Compressive Strength of Concrete (부재의 길이가 콘크리트의 휨압축강도에 미치는 영향)

  • 김진근;이성태;이태규
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.63-71
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a reinforced concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios (from 1,2,3 and 4) of specimens with compressive strength of 590 kgf/$\textrm{cm}^2$. Results indicate that for the region of h/c <3.0 the reduction in flexural compressive strength with increase of length-to-depth ratios was apparent. A model equation was depth of an equivalent rectangular stress block was larger than that by ACI. It was also founded that the effect of specimen length on ultimate strain was negligible. Finally more general model equation is also suggested.

A Study on the Ultimate Strength of Tube-Gusset Connection Considering Eccentricity (편심이 고려된 강관-가셋트 접합부의 극한 내력)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.201-210
    • /
    • 2001
  • A numerical analysis and experimental study were performed to investigate the behavior and strength of tube-gusset connection subjected to axial and lateral forces. To investigate the behavior of the connections, experiment was conducted by applying three directional loads. Local buckling and local plastic bending deformation of the connection were observed from the test. Analytical results were compared with test results for the limited cases. Primary interests here are the effect of eccentricity on the strength of the connection. To suggest a formula for the strength of tube-gusset connection, lateral forces were replaced with equivalent wall moment and eccenrtric vertical component force of lateral force. Ultimate strength formula for the each force was proposed. Finally, nondimensionalized ultimate strength interaction relationships between the wall moment of tube($M_w$), vertical axial force($P_v$), and eccentric vertical component of lateral force($P_e$) were formulated through parametric study.

  • PDF

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.325-335
    • /
    • 2024
  • Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.

Evaluation of Multiaxial Fatigue Strength of a Urban Railway Wheel Steel (도시철도 차량 차륜재의 다축 피로강도 평가)

  • Ahn, Jong-Gon;You, In-Dong;Kwon, Seok-Jin;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Uniaxial and biaxial torsional fatigue tests were conducted on the samples extracted from urban railway wheel steel. Ultimate and yield strengths of the steel were 1027.7 MPa and 626 MPa, respectively. The uniaxial fatigue limit was 422.5 MPa, corresponding 67% of the ultimate tensile strength. The ratio of ${\tau}_e/{\sigma}_e$ was 0.63. Fatigue strength coefficient and exponent were 1319.5 MPa and 0.339, respectively. Maximum principal and equivalent strain were found to be adequate parameter to predict fatigue lifetime of the steel under multiaixal fatigue condition.