• 제목/요약/키워드: Equivalent Stress

검색결과 1,116건 처리시간 0.033초

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

해상 운송을 위한 보일러 모듈의 구조 해석 (Structural Analysis of Boiler Module for Sea-Transportation)

  • 전윤철;김태완;정동관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.788-793
    • /
    • 2001
  • Finite element analysis was carried out to investigate the integrity and reliability of boiler module during sea transportation. The boiler module was supported by steel structure to relieve the instantaneous shock from oceanic wave and its primary parts were strengthened with several reinforcements. Finned tube walls which were used in the furnace wall were assumed as orthotropic plates having equivalent material properties. The bank tubes were also equivalently modeled in accordance with ASME B31.1 for the convenience of finite element modeling. The calculation results were compared with the yield stress of the material. In particular, the bank tube stress, which was evaluated by converting the calculated stresses in equivalent tubes into those in original tubes by using the ratio of diameter, was also examined with yield stress.

  • PDF

Determination of equivalent blasting load considering millisecond delay effect

  • Song, Zhan-Ping;Li, Shi-Hao;Wang, Jun-Bao;Sun, Zhi-Yuan;Liu, Jing;Chang, Yu-Zhen
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.745-754
    • /
    • 2018
  • In the analysis of the effects of rock tunnel blasting vibration on adjacent existing buildings, the model of simplified equivalent load produces higher calculation result of vibration, due to the lack of consideration of the millisecond delay effect. This paper, based on the static force equivalence principle of blasting load, proposes a new determination method of equivalent load of blasting vibration. The proposed method, based on the elastic-static force equivalence principle of stress wave, equals the blasting loads of several single blastholes in the same section of millisecond blasting to the triangle blasting load curve of the exploded equivalent elastic boundary surface. According to the attenuation law of stress wave, the attenuated equivalent triangle blasting load curve of the equivalent elastic boundary is applied on the tunnel excavation contour surface, obtaining the final applied equivalent load. Taking the millisecond delay time of different sections into account, the time-history curve of equivalent load of the whole section applied on the tunnel excavation contour surface can be obtained. Based on Sailing Tunnel with small spacing on Sanmenxia-Xichuan Expressway, an analysis on the blasting vibration response of the later and early stages of the tunnel construction is carried out through numerical simulation using the proposed equivalent load model considering millisecond delay effect and the simplified equivalent triangle load curve model respectively. The analysis of the numerical results comparing with the field monitoring ones shows that the calculation results obtained from the proposed equivalent load model are closer to the measured ones and more feasible.

마이크로 금 전해 도금 구조물의 잔류응력 측정 (Residual Stress Measurement of Micro Gold Electroplated Structure)

  • 백창욱;안유민
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.195-200
    • /
    • 2000
  • In order to find a residual stress in the micro-machined beam, first natural frequency of the beam that has the residual stress inside is analyzed using the Rayleigh's energy method. Micro gold electroplated structure is fabricated by surface micro-machining process. The made structure is clamped-clamped beam and its 1st natural frequency is measured by resonance method. For the better estimation of the residual stress, an equivalent length of micro-machined beam to ideal beam is calculated by FEM. The residual stress is estimated from the equivalent length and the measured natural frequency.

  • PDF

구조해석을 통한 안전블록 설계 최적화 (Optimization of Design of Safety Block by Structural Analysis)

  • 남기우;권효성;손창석
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.71-76
    • /
    • 2010
  • The safety block which prevents drop of laborers at high altitude was analyzed by finite element method. Elastic analysis was done by Ansys ver. 11.0. and tetrahedral meshing was used. As load applied more vertically at the fixed face of saw tooth, the stress concentration became smaller and the load distributed broader. When load worked at saw tooth and the shape was more straight to the direction of load, most stresses except principal stress became smaller. When the area of the load increased, principal stress and equivalent stress could be decreased simultaneously. A principal stress and other various stresses occurred in 3D shape, therefore revised model which has smaller equivalent stress than other models shows excellence on the stability and the credibility.

Stress evaluation method of reinforced wall-thinned Class 2/3 nuclear pipes for structural integrity assessment

  • Jae-Yoon Kim;Je-Hoon Jang;Jin-Ha Hwang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1320-1329
    • /
    • 2024
  • When wall-thinning occurs in nuclear Class 2 and 3 pipes, reinforcement is typically applied rather than replacement. To analyze the structural integrity of reinforced wall-thinned pipe, stress analysis results using full 3-D FE analysis are not compatible to the design code equation, ASME BPVC Sec. III NC/ND-3650. Therefore, the efficient stress evaluation method for the reinforced wall-thinned pipe, compatible to the design code equation, needs to be developed. In this paper, stress evaluation methods for the reinforced wall-thinned pipe are proposed using the equivalent straight pipe concept. Furthermore, for fatigue analysis of the reinforced wall-thinned pipe, the stress intensification factor of reinforced wall-thinned pipe is presented using the structural stress method given in ASME BPVC Sec. VIII Div.2.

상이한 골질과 제원에 따른 짧은 임프란트의 응력 분포: 3차원 유한 요소 분석 (STRESS DISTRIBUTION PATTERN OF THE DIFFERENT DIAMETER AND LENGTH OF SHORT IMPLANTS ACCORDING TO THE BONE QUALITY : 3-D FINITE ELEMENTS ANALYSIS)

  • 김한구;김창현;표성운
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제31권2호
    • /
    • pp.116-126
    • /
    • 2009
  • The use of short implants has been accepted risky from biomechanical point of view. However, short implants appear to be a long term viable solution according to recent clinical reports. The purpose of this study was to investigate the effect of different diameter and length of implant size to the different type of bone on the load distribution pattern. Stress analysis was performed using 3-dimensional finite element analysis(3D-FEA). A three-dimensional linear elastic model was generated. All implants modeled were of the various diameter(${\phi}4.0$, 4.5, 5.0 and 6.0 mm) and varied in length, at 7.0, 8.5 and 10.0 mm. Each implant was modeled with a titanium abutment screw and abutment. The implants were seated in a supporting D2 and D4 bone structure consisting of cortical and cancellous bone. An amount of 100 N occlusal load of vertical and $30^{\circ}$ angle to axis of implant and to buccolingual plane were applied. As a result, the maximum equivalent stress of D2 and D4 bones has been concentrated upper region of cortical bone. As the width of implant is increased, the equivalent stress is decreased in cancellous bone and stress was more homogeneously distributed along the implants in all types of bone. The short implant of diameter 5.0mm, 6.0mm showed effective stress distribution in D2 and D4 bone. The oblique force of 100N generated more concentrated stress on the D2 cortical bone. Within the limitations of this study, the use of short implant may offer a predictable treatment method in the vertically restricted sites.

타원형 및 토리-구형 압력용기도옴의 두께 최적화설계 (Optimal Thickness Design of Ellipsoidal and Tori-Spherical Pressure Vessel Domes)

  • 이영신;김영완;조원만
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.707-715
    • /
    • 1994
  • This study presents thickness optimization for the pressure vessel domes subject to internal pressure and axial force simultaneously. The considered typical pressure vessel domes are ellipsoidal and tori-spherical domes with skirt and nozzle part. These pressure vessel domes under loading have higher stress concentration on geometric discontinuity parts. Therefore, thickness optimization of axi-symmetric pressure vessel domes is essentially concerned on minimizing this stress concentration. The objective function is minimization of weight of pressure vessel dome. The design variable is thickness of dome and cylinder. Considered constraint is Von Mises equivalent stress. In the optimization procedure, ANSYS code is used. The equivalent and hoop stress of original shape domes are compared with those of optimal shape domes. And optimal thicknesses for pressure vessel domes are presented.

후판 용접부의 역학적 특성 -유한요소법에 의한 3차원 열탄소성 해석- (Study on the Mechanical Behavior of Welded part in thick Plate)

  • 방한서
    • Journal of Welding and Joining
    • /
    • 제10권4호
    • /
    • pp.250-258
    • /
    • 1992
  • In order to clarify the mechanical behavior of welding crack and to evaluate the mechanical characteristics of welded parts in thick plate, it is very important to accurately predict the welding deformation and residual stress including transient state before welding. In this paper, the theory of a three-dimensional elasto-plastic problem for the analysis of mechanical phenomenon of welding joint on the plate is developed into an efficient and accurate method based on the finite element method, and then several examples are considered by using the proposed model. The results of numerical analyses are discussed in the viewpoint of the mechanical characteristics of the distribution of three-dimensional welding residual stresses, plastic strains and their production mechanism on the thick plate.

  • PDF

70/15 ton×105 m 레벨러핑 크레인의 구조해석 (Structural Analysis for a 70/15 ton×105 m Level Luffing Crane)

  • 김민생;신유인;송철기
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.983-990
    • /
    • 2013
  • Evaluation of the structural analysis for a 70/15 ton${\times}$105 m LLC (Level Luffing Crane) was conducted with an FEM Tool. Due to a discordance of the modeling and element type, the LLC was progressively analyzed after dividing it into the boom, main structure and rocker. All loads such as slewing, traveling and wind load, etc., that are indicated in the reference standards, were inputted as various severe conditions of the LLC. The deformation, equivalent stress(Von Mises stress), buckling characteristics were evaluated for the LLC structures. The stress concentrated areas over the allowable stress were identified, and reinforcement work was performed with a stiffener.