• Title/Summary/Keyword: Equivalent Resistance

Search Result 662, Processing Time 0.026 seconds

Resistance and Frequency Properties Analysis of QCM Coated with LB Films (LB막이 누적된 QCM의 저항 및 주파수 특성해석)

  • 강현욱;진철남;김정명;권명수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.465-467
    • /
    • 1997
  • The oscillating properties of quartz Crystal Microbalance(QCM) were analyzed by electrical measurement. We tried to analyze the properties of quartz crystal coated with Langmuir-Bladgett(LB) films using the frequency and resistance at resonance in the electrical equivalent circuit. The resonant frequency was decreased linearly as to layers of LB films, however, there are some gap between theoretical values, Sauerbrey's equation and experimental values. The resistance was increase nonlinearly as to layers.

  • PDF

A Study of Power Output Characteristics for the Magnesium Metal Fuel Cell (마그네슘 금속연료전지의 출력특성에 관한 연구)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • The electric power output characteristics of magnesium fuel cell were investigated with regard to internal resistance. A equivalent circuit with the series-connected three internal resistance was introduced to analyze of the response to change of power. The power output analysis was employed in order to investigate the effect of internal resistances for the electrolyte concentration, air electrode area, Mg electrode area and distance between the electrodes. It was confirmed that internal resistance is generated by the electrolyte, air electrode and metal electrode, then those Internal resistances had a significant effect on the power output decrease. The power output was a maximum when the load resistance maches the internal resistance of the magnesium fuel cell. The fuel efficiency was only 50% at maximum power output. Higher fuel efficiency was achieved when the load resistance is greater than the internal resistance.

A Study on the Resistance Spot Welding of Aluminum Alloy (I) (알루미늄 합금의 저항점 용접에 관한 연구 ( I ))

  • 김상필;홍태민;장희석
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.127-140
    • /
    • 1994
  • Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. In the resistance spot welding processes the size of molten nugget is a criterion to assess weld quality. Many research have founded on measuring weld nugget size at the same time monitoring welding process parameters such as dynamic resistance and electrode movement. With increasing demand of energy saving, many efforts were made to employ aluminum alloys that are lighter than steel and have relatively equivalent strength to steel in the automobile industry. In this paper, spot weldability of aluminum alloys for various welding conditions were examined by series of experiments. One of the 6000 series (Mg-Si) aluminum alloy, 6383-T4 was chosen, which is currently considered as a substitute for the galvanized steel. Dynamic resistance, electrode movement and corresponding nugget size were observed and compared to the case of steel. Finally, resistance spot welding of dissimilar material (galvanized steel-aluminum alloy) was attempted.

  • PDF

Analytical Study on Effects of Gravity Load on Blast Resistance of Steel Compressive Members (강재압축재의 방폭성능에 대한 중력하중효과의 해석적 연구)

  • Lee, Kyungkoo;Lee, Moon Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • Equivalent Single-Degree-of-Freedom(SDOF) analysis, most used for blast-resistant design, does not consider the effects of gravity load on the performance evaluation of blast resistance of structural members. However, since there exists gravity load on columns and walls of structures, the blast resistance of structural members should be evaluated considering gravity load on them. In this paper, an approach to reflect the gravity load effects on the equivalent SDOF analysis for dynamic blast response of structural members is proposed. For this purpose, the parametric studies using finite element analysis were performed by varying maximum blast load, blast load duration, and gravity load with constant the resistance and natural period of a structural member. The finite element analysis results were compared with the equivalent SDOF analysis results and the blast response of the structure member was estimated by conducting finite element analyses for various gravity loads. Finally, a graphical solution for ductility of a structural member with the variables of blast load, gravity load and structural member properties was developed. The blast response of structural members under gravity load could be estimated reasonably and easily by using this graphical solution.

Hydrogen Embrittlement Resistance and Diffusible Hydrogen Desorption Behavior of Multipass FCA Weld Metals (다층 FCA 용착금속의 수소취성 저항성 및 확산성 수소 방출 거동)

  • Yoo, Jaeseok;Xian, Guo;Lee, Myungjin;Kim, Yongdeok;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.112-118
    • /
    • 2013
  • In this study, constant loading test (CLT) was performed to evaluate the hydrogen embrittlement resistance for multipass FCA weld metals of 600MPa tensile strength grade. The microstructures of weld metal-2 having the smallest carbon equivalent (Ceq=0.37) consisted of grain boundary ferrite and widmanstatten ferrite in the acicular ferrite matrix. The weld metal-1 having the largest Ceq=0.47, showed the microstructures of grain boundary ferrite, widmanstatten ferrite and the large amount of bainite (vol.%=19%) in the acicular ferrite matrix. The weld metal-3 having the Ceq=0.41, which was composed of grain boundary ferrite, widmanstatten ferrite, and the small amount of bainite (vol.%=9%) in the acicular ferrite matrix. Hydrogen desorption spectrometry (TDS) used to analyze the amount of diffusible hydrogen and trapping site for the hydrogen pre-charged specimens electrochemically for 24 hours. With increasing the current density of hydrogen pre-charging, the released amount of diffusible hydrogen was increased. Furthermore, as increasing carbon equivalent of weld metals, the released diffusible hydrogen was increased. The main trapping sites of diffusible hydrogen for the weld metal having a low carbon equivalent (Ceq=0.37) were grain boundaries and those of weld metals having a relatively high carbon equivalent (Ceq: 0.41~0.47) were grain boundaries and dislocation. The fracture time for the hydrogen pre-charged specimens in the constant loading test was decreased as the carbon equivalent increased from 0.37 to 0.47. This result is mainly due to the increment of bainite that is vulnerable to hydrogen embrittlement.

Estimation of Axial toad Capacity for Tapered Piles Using Equivalent Transformation (등가변형을 이용한 테이터 말뚝의 지지력 산정)

  • Jun, Sung-Nam;Seo, Kyung-Bum;Song, Won-Jun;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.57-64
    • /
    • 2009
  • In this study, a method using equivalent transformation for estimation of the axial load capacity of tapered piles is proposed. While preexistent methods for estimating the axial load capacity of tapered piles have been based on the effect of soil state and taper angle, a new design method is proposed considering cone resistance $q_c$ and equivalent transformation in sand. Through tapered pile simplified by using equivalent transformation, a new method fur quick and easy estimation of the axial load capacity of tapered pile is proposed for practical use. In order to verify the proposed method, calibration chamber test and field test were conducted. In calibration chamber test, comparison of estimated axial load capacity with measured one showed that the standard deviation and COV (Coefficient Of Variation) of estimated $Q_t$ is $0.05{\sim}0.121$, $0.04{\sim}0.05$ respectively. For field test, axial load capacity by proposed method shows 2.5% under-estimation in comparison with measured value. As a result, it is found that proposed method produces satisfactory predictions for tapered piles.

Systematic Approach of Internal Parameters for Equivalent Electrical-Circuit Modeling(EECM) of a Li4Ti5O12(LTO) cell (Li4Ti5O12(LTO) 배터리 등가회로 모델링을 위한 내부 파라미터 체계적 해석)

  • Lee, Pyeong-Yeon;Yoon, Chang-O;Park, Jin-Hyeong;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • This study introduces a systematic approach to selecting the internal parameters applied to the equivalent electrical-circuit model (EECM) of a lithium titanium oxide ($Li_4Ti_5O_{12}$; LTO) rechargeable cell. Based on the dynamic characteristic of the cell, a simplified EECM consisting of an open-circuit voltage (OCV), an ohmic resistance, and an RC ladder is fabricated. To select the internal parameters of a simplified EECM, experiments on discharge capacity, OCV, and discharge/charge resistances are performed using hybrid pulse power characterization and direct current internal resistance (DCIR) measurements over the full state-of-charge (SOC) range. The experimental results of the LTO rechargeable cell highlight the importance of correct selection of internal parameters that can reduce EECM errors. This study clearly provides experimental procedures, internal parameters results, and EECM guidelines for adaptive control-based SOC estimation for LTO rechargeable cells.

Measurement and Analysis of Earth Resistivity for the Substation Grounding Design (변전소 접지설계를 위한 대지고유저항의 측정과 해석)

  • Han, P.;Kim, J.Y.;Choi, J.K.;Jung, G.J.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.807-812
    • /
    • 1997
  • For an equivalent uniform soil model to multiple-layered soil structure, ground depth, which is used in the calculation of equivalent resistivity, should be varied according to the size of grounding area. In case of 150 kV substation grounding design, 15 m of ground depth has been used and 25 m for 345 kV, But applying these ground depths can lead to errors in grounding resistance calculation, and these errors are coming from the poor representation of those depths to real soil resistivities. In this paper, the soil resistivity measurement techniques by Wenner method and grounding resistance calculation results by computer simulation were presented. Case studies contain the area from 3,000 to $30,000\;m^2$ and measuring space from of m to $100{\sim}250\;m$, Based of the computation results, 50 m, 60 m and 80 m of ground depth for less than 30, 40 and 70 m of equivalent hemispherical radius were proposed respectively.

  • PDF

Property analysis of multi layer Organic Light Emitting Diodes using equivalent circuit models (등가 회로 모델을 이용한 다층 유기발광 소자의 특성 분석)

  • Park, Hyung-Jun;Kim, Hyun-Min;Yi, Jun-Sin;Nam, Eun-Kyoung;Jung, Dong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.119-120
    • /
    • 2006
  • The impedance spectroscopy is one of the effective ways to understand the electrical properties of organic light emitting diodes. The frequency-dependant properties of small molecule based OLEDs have been studied. The equivalent circuit of single-layer device is composed of contact resistance ($R_c$), bulk resistance ($R_p$) and bulk capacitance ($C_p$). The equivalent circuit of double layer device is composed of two parallel circuits connected in series, each of which is a parallel resistor and a capacitor. We have fabricated a double layer device indium-rio-oxide (ITO, anode), N,NV -diphenyl- N,NV -bis(3-methylphenyI)-1,1V -diphenyl-4,4V-diamine (TPD, hole-transporting layer), tris-(8-hydroxyquinoline) aluminum (Alq3, emitting layer), and aluminum (AI, cathode) and two single layer devices ([TO/ Alq3/ AI, ITO/TPD/AI).

  • PDF

Optimum design analysis of ICP(Inductively Coupled Plasma) torch for high enthalpy thermal plasma flow (고엔탈피 열유동 발생용 고주파 유도결합 플라즈마 토치의 최적 설계변수 해석)

  • Seo, Jun-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.316-329
    • /
    • 2012
  • In this paper, optimum design process of ICP (Inductively Coupled Plasma) torch, which has been used widely in aerospace application, such as supersonic plasma wind tunnel, is presented. For this purpose, the behaviors of equivalent circuit parameters (equivalent resistance and inductance, coupling efficiency) were investigated according to the variations of torch design parameters (frequency, $f$, confinement tube radius, $R$ and coil turn numbers, $N$) in the basis of analytical and numerical MHD (Magneto Hydro-Dynamics) models combined with electrical circuit theory. From the results, it is found that equivalent resistance is increased with the increase of $f$ values but vice versa for equivalent inductance. For elevated values of $R$ and $N$, however, both parameters tend to increase. Based on these observations, ICP torch with a power level of 10 kW can be optimized at the design ranges of $f$=4~6 MHz, $R$=17~25 mm and $N$=3~4 to maximize the electrical coupling efficiency, which is the ratio of equivalent resistance to equivalent inductance.