• Title/Summary/Keyword: Equivalent Parameter

Search Result 612, Processing Time 0.027 seconds

Analysis on Deformation and Stiffness of Frame Structure for Fishery using Finite Element Methods (유한 요소법을 이용한 어업용 프레임 구조물의 변형 및 강도 해석)

  • 김태호;류청로;김대안
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.307-316
    • /
    • 2002
  • In order to evaluate the deformation and stiffness of frame structure for fishery, composed of unit platforms which made of two concentric high density polyethylene buoys fixed by clamps and belts and rubber hinge components, under wave, the structural analysis for the square type of the structure was carried out by using finite element methods. The accurate physical properties of rubber hinge components determined by material tests were an important parameter to evaluate more reliable structural stability for the structure. The idealization to beam element with equivalent stiffness and rubber element with linearity for rubber hinges was necessary for the modeling of rubber component which has hyper-elastic characteristics. In addition, it was shown that the structural response of the structure under wave was larger in the hogging condition than that of in the still water or in the sagging condition.

Study on Transformer and Inductor Using Equivalent Air gap to Partial Flux Saturation (국부적 자속 포화 현상을 이용한 리엑터 및 변압기의 공극 등가 모델에 관한 연구)

  • Park, Sung-Jun;Lee, Sang_Hun;Kim, Jeong-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.103-112
    • /
    • 2014
  • BY the Transformers and reactors, the input electrical energy is converted into magnetic energy. At the end through the magnetic energy was passed at the output parameter. Specially At the flyback transformer or a reactor airgap were designed to contain more magnetic energy. But that work is very difficult for the optimal design. It is that Contradictions are between the length of the Air-gap, Winding inductance, DC bias. As to e Several conflicting conditions in order to determine the optimum Air-gap has a lot of experience and trial & error is necessary. The approach proposed in this paper, the auxiliary winding on the core attached to part of primary core, that by applying a DC voltage has a dramatic effect like Core with designed Air-gap. This inventiveness and advantage is to regulate arbitrarily the Saturation Flux Quantity by the input signal to secondary winding. Accordingly obtained the biggest effect is that increasing limits of the saturation current destined by the material and shape of the conventional core. In other words, that can decreas the size of the transformer and reactor, While maintaining the current saturation capacity. This paper, prove its effect as using the local flux saturation in transformers and reactors for research by the computer program using the finite element method (FEM) simulation, followed by actual experiment to verify

Efficient Compression Algorithm with Limited Resource for Continuous Surveillance

  • Yin, Ling;Liu, Chuanren;Lu, Xinjiang;Chen, Jiafeng;Liu, Caixing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5476-5496
    • /
    • 2016
  • Energy efficiency of resource-constrained wireless sensor networks is critical in applications such as real-time monitoring/surveillance. To improve the energy efficiency and reduce the energy consumption, the time series data can be compressed before transmission. However, most of the compression algorithms for time series data were developed only for single variate scenarios, while in practice there are often multiple sensor nodes in one application and the collected data is actually multivariate time series. In this paper, we propose to compress the time series data by the Lasso (least absolute shrinkage and selection operator) approximation. We show that, our approach can be naturally extended for compressing the multivariate time series data. Our extension is novel since it constructs an optimal projection of the original multivariates where the best energy efficiency can be realized. The two algorithms are named by ULasso (Univariate Lasso) and MLasso (Multivariate Lasso), for which we also provide practical guidance for parameter selection. Finally, empirically evaluation is implemented with several publicly available real-world data sets from different application domains. We quantify the algorithm performance by measuring the approximation error, compression ratio, and computation complexity. The results show that ULasso and MLasso are superior to or at least equivalent to compression performance of LTC and PLAMlis. Particularly, MLasso can significantly reduce the smooth multivariate time series data, without breaking the major trends and important changes of the sensor network system.

Evaluation of Seismic Strengthening Approach at the Boundary Elements of RC Walls using Prestressed Wire Rope Units (프리스트레스트 와이어로프를 사용한 RC 벽체의 단부 경계요소 내진보강 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • The present study examined the reversal cyclic flexural behavior of walls with jacket section approach for seismic strengthening through forming the boundary elements at both ends of the wall. The prestressed wire ropes were used for the lateral reinforcement to confine the boundary element of the wall. The main parameter investigated was the height of the jacket section for strengthening. The limit height of the strengthening jacket section was determined by comparing the moment distributions between the existing and strengthened walls. Test results showed that the examined jacket section approach was significantly effective in enhancing the flexural resistance of walls, indicating 46% higher stiffness at peak strength and 210% greater work damage indicator, compared with the flexural performance of the unstrengthened wall. The ductility of the strengthened walls was insignificantly affected by the height of the jacket section when the height is greater than twice the wall length. The flexural capacity of the strengthened walls was 22% higher than the predictions obtained using the equivalent stress block specified in ACI 318-14.

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

A New Method on the Nonlinear Distortion Analysis in the OFDM Communication System (OFDM 통신 시스템에서 비선형 왜곡분석의 새로운 분석기법)

  • 이동훈;정기호;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.538-545
    • /
    • 2002
  • In the orthogonal frequency division multiplexing (OFDM) system, the nonlinear distortion in the high power amplifier(HPA) degrades the system performance because of the high peak-to-average power ratio (PAPR). In this paper, a semi-analytical method is newly proposed for the performance evaluation of the nonlinearly distorted OFDM communication system. In the proposed method, at first, the probability density function (pdf) of the PAPR is generated by computer simulation. Then, mean and variance of the non-linear distortion noise process are computed. Next, the overall BER is found by the analytical method. When the equivalent SSPA model is applied in case of the QPSK/16-QAM and AWGN channel, the BER is calculated for the variation of the IBO(input back-off) and PAPR parameter. It is shown that the results by proposed method are very similar to those of the conventional Monte-Carlo method. The computation time can be considerably reduced than the conventional method that depends on the magnitudes of BER and IBO.

Non-Radiative Dielectric(NRD) Rotman Lens with Gap-Coupled Unidirectional Dielectric Radiator(UDR) (갭 결합된 단향성 유전체 방사체를 적용한 비방사 유전체 로트만 렌즈)

  • 이재곤;이정해
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1269-1275
    • /
    • 2003
  • In this paper, nonradiative dielectric(NRD) rotman lens with a gap-coupled unidirectional dielectric radiator(UDR) has been designed. Gap-coupled UDR is structurally suitable for NRD rotman lens. We have optimized NRD rotman lens for minimizing side-lobe, and calculated design parameters of UDR such as length of resonator and distance of gap using an equivalent circuit model of an evanescent NRD guide. Experimental prototype of UDR is fabricated and measured at the center frequency of 38 GHz. The simulated S-parameter and far-field radiation beam pattern of UDR show good agreements with measured data. Finally, total beam pattern of NRD rotman lens of multi-beam feed has been obtained using a measured pattern of UDR and array factor of NRD rotman lens. The obtained beam pattern shows remarkably suppressed side-lobe.

A new method for optimal selection of sensor location on a high-rise building using simplified finite element model

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.671-684
    • /
    • 2011
  • Deciding on an optimal sensor placement (OSP) is a common problem encountered in many engineering applications and is also a critical issue in the construction and implementation of an effective structural health monitoring (SHM) system. The present study focuses with techniques for selecting optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom (DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic behavior of a structural system with sufficient accuracy to allow its health state to be determined effectively. However, it's difficult to accurately distinguish the translational and rotational modes for the flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified multi-DOF system was presented based on the equivalent rigidity parameter identification method. The initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix. Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target function, one more sensor was added each time until the maximum off-diagonal element of the MAC reaches the threshold. Considering the economic factors, the final plan of sensor placement was determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.

Core-loss Reduction on Permanent Magnet for IPMSM with Concentrated Winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • Interior Permanent Magnet Synchronous motors (IPMSM) with concentrated winding are superior to distributed winding in the power density point of view. But it causes huge amount of eddy current losses on the permanent magnet. This paper presents the optimal permanent magnet V-shape on the rotor of an interior permanent magnet synchronous motor to reduce the core losses and improve the performance. Each eddy current loss on permanent magnet has been investigated in detail by using FEM (Finite Element Method) instead of equivalent magnetic circuit network method in order to consider saturation and non-linear magnetic property. Simulation-based design of experiment is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, it is verified by FEM.

A Parallel Equalization Algorithm with Weighted Updating by Two Error Estimation Functions (두 오차 추정 함수에 의해 가중 갱신되는 병렬 등화 알고리즘)

  • Oh, Kil-Nam
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.32-38
    • /
    • 2012
  • In this paper, to eliminate intersymbol interference of the received signal due to multipath propagation, a parallel equalization algorithm using two error estimation functions is proposed. In the proposed algorithm, multilevel two-dimensional signals are considered as equivalent binary signals, then error signals are estimated using the sigmoid nonlinearity effective at the initial phase equalization and threshold nonlinearity with high steady-state performance. The two errors are scaled by a weight depending on the relative accuracy of the two error estimations, then two filters are updated differentially. As a result, the combined output of two filters was to be the optimum value, fast convergence at initial stage of equalization and low steady-state error level were achieved at the same time thanks to the combining effect of two operation modes smoothly. Usefulness of the proposed algorithm was verified and compared with the conventional method through computer simulations.