• Title/Summary/Keyword: Equivalent Mechanical Model

Search Result 496, Processing Time 0.021 seconds

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Basic Study on the Optimization of Automotive Battery Post Clamp (자동차용 배터리 포스트 클램프의 최적화에 관한 기초적 연구)

  • Choi, Hae-Kyu;Lee, Evan;Kim, Choon-Sik;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5443-5449
    • /
    • 2011
  • Battery post clamp has the role to fix each of terminals at electric condenser by connecting with the cable of power source. In this study, optimum design was achieved by reducing the material cost and the weight of vehicle with one part of battery post clamp. Stress and displacement were obtained by optimizing with design variables. The advanced model by the design through this study were compared with the original model. These optimum values can be applied usefully with the manufacturing field of battery component.

3D Printing and Structure Anlaysis of the Submarine Mast Cover (잠수함 마스트 커버의 구조해석 및 3D 프린팅)

  • Jae-Hyeog Woo;Byeong-Joon Cha;Chul-Kyu, Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.937-943
    • /
    • 2023
  • In this study, the mast cover of submarine was reverse engineered and structural analysis was performed. In order to print with the 3D printer, the modeling was reduced to 1/5 size by applying geometric similarity. From the structural analysis results, it was found that the maximum value of equivalent stress generated in the mast cover was 180.9 MPa. This stress value occurs on the inner surface in the major axis. As a result of applying the load condition at a diving depth of 600 m, the mast cover is in a completely elastic state. The 1/5 size model printed on FDM 3D printer with PLA filament was the same as the reverse engineered modeling and it was printed in a perfect shape with no apparent defects. The 1/5 size model printed on PBF 3D printer with SUS316L powder was perfectly manufactured with no apparent defects.

A Convergence Study on Impact Analysis of Automotive Side Door by the Class of Vehicle (차종별 차량 옆문의 충돌 해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.173-177
    • /
    • 2020
  • In this study, the side doors of mid-size sedan vehicles of models A and B which are currently prone to rollover accidents are compared with each other by the structural analyses. As a result of the structural analysis, both models showed the maximum deformation at the point of overturning or impact load, and the model A of the two models was able to withstand greater impact load compared to the model B. In addition, the maximum stress happened at the door edge, and model B was 2.5 times more stressed than model A. In the accident of a crash, model A, which has the smaller maximum stress, is able to withstand greater impact loads than model B. Since model B has a larger deformation than model A, it is considered to be more dangerous than model A in the side impact accident. By applying the impact analysis of automotive side door by the class of vehicle, the study result at this paper is considered to be favorable as the convergent research material which can apply the aesthetic design.

Structural integrity assessment procedure of PCSG unit block using homogenization method

  • Gyogeun Youn;Wanjae Jang;Youngjae Jeon;Kang-Heon Lee;Gyu Mahn Lee;Jae-Seon Lee;Seongmin Chang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1365-1381
    • /
    • 2023
  • In this paper, a procedure for evaluating the structural integrity of the PCSG (Printed Circuit Steam Generator) unit block is presented with a simplified FE (finite element) analysis technique by applying the homogenization method. The homogenization method converts an inhomogeneous elastic body into a homogeneous elastic body with same mechanical behaviour. This method is effective when the inhomogeneous elastic body has repetitive microstructures, and thus the method was applied to the sheet assembly among the PCSG unit block components. From the method, the homogenized equivalent elastic constants of the sheet assembly were derived. The validity of the determined material properties was verified by comparing the mechanical behaviour with the reference model. Thermo-mechanical analysis was then performed to evaluate the structural integrity of the PCSG unit block, and it was found that the contact region between the steam header and the sheet assembly is a critical point where large bending stress occurs due to the temperature difference.

Structural analysis of flexible wing using linear equivalent model (선형 등가모델을 이용한 유연날개 구조해석)

  • Kim, Sung Joon;Kim, Dong Hyun;Lim, Joosup;Lee, Sang Wook;Kim, Tae-Uk;Kim, Seungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.699-705
    • /
    • 2015
  • Aircraft needs high lift-to-drag ratio and weight reduction of the structure for long endurance flight with a small power. Generally high aspect ratio wing is applied to HALE(High Altitude Long Endurance) aircraft. Also high modulus, and high strength CFRP(Carbon Fiber Reinforced Plastic) has been used in primary structures. and thin mylar(membrane material) film has been applied to skin of wing. As a result, wing is more flexible than the other structures. and the stiffness of thin mylar film has an affect on dynamic stability. In this study, the membrane characteristic of mylar film has been simulated using nonlinear gap elements. And equivalent modeling method using shell elements is presented using the nonlinear simulation result. The linear equivalent model has verified using the results of nonlinear membrane method. Proposed linear equivalent shell model has applied to mode analysis for estimate the effect of mylar mechanical properties on natural frequency.

Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram

  • Lee, Jae-Youl;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • This paper describes the results of experiments and numerical simulation studies on the impact and indentation damage created by low-velocity impact subjected onto honeycomb sandwich panels for application to the BIMODAL tram. The test panels were subjected to low-velocity impact loading using an instrumented testing machine at six energy levels. Contact force histories as a function of time were evaluated and compared. The extent of the damage and depth of the permanent indentation was measured quantitatively using a 3-dimensional scanner. An explicit finite element analysis based on LS-DYNA3D was focused on the introduction of a material damage model and numerical simulation of low-velocity impact responses on honeycomb sandwich panels. Extensive material testing was conducted to determine the input parameters for the metallic and composite face-sheet materials and the effective equivalent damage model for the orthotropic honeycomb core material. Good agreement was obtained between numerical and experimental results; in particular, the numerical simulation was able to predict impact damage area and the depth of indentation of honeycomb sandwich composite panels created by the impact loading.

Modeling of an Inductive Position Sensing System based on a Magnetic Circuit and its Analysis (자기 회로를 이용한 인덕턴스형 변위 측정 시스템의 모델링 및 해석)

  • Choi, Dong-June;Rim, Chun-Taek;Kim, Su-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.93-101
    • /
    • 2001
  • This paper presents modeling of an inductive micro position sensing system and its analysis. The parameters affected the system response are excitation frequency, turn ratio, input position, air-gap size, load resistance, and geometric dimensions. To analyze the system, we try to establish a modeling based on an equivalent magnetic circuit with permeances. The model is verified by the experimental results from 1 kHz to 20 kHz. The magnetic circuit model is well fitted to the experimental data except a little error due to LC resonance in the large turn-ratio system. Modeling enables us to theoretically approach the response characteristics. Based on the magnetic circuit model, system parameters can be selected in such a way to obtain the required characteristics such as high sensitivity, good linearity, or small size.

  • PDF

Magnetic-Field-Model and Circuit-Model Based Analysis of Three-Phase Magnetically Coupled Resonant Wireless Power Transfer Systems with Cylinder-Shaped Coils

  • Chen, Xuling;Fu, Xiewei;Jiang, Chong;Pei, Cunhui;Liu, Fuxin
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1154-1164
    • /
    • 2018
  • In single-phase magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the transfer characteristics, including the output power and transfer efficiency, are significantly influenced by the spatial scales of its coils. As a potential alternative, a three-phase MCR WPT system with cylinder-shaped coils that are excited in a voltage-fed manner has been proposed to satisfy the requirements of compact space. This system adopts a phase-shifted angle control scheme to generate a rotating magnetic field and to realize omnidirectional WPT that is immune to spatial scales. The magnetic field model and equivalent circuit models are built to holistically analyze the system characteristics under different angular misalignments. Research results show that the transfer characteristics can be improved by modulating the phase-shifted angle in each phase. Experiments have also been carried out to evaluate the accuracy of the theoretical analysis and to confirm the validity of the system modeling method.

Effect of Residual Stress on Fatigue Strength in Resistance Spot Weldment (저항 점 용접부의 피로강도에 미치는 잔류응력의 영향)

  • Yang, Yeong-Su;Son, Gwang-Jae;Jo, Seong-Gyu;Hong, Seok-Gil;Kim, Seon-Gyun;Mo, Gyeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1713-1719
    • /
    • 2001
  • Estimation of fatigue strength on the spot welded joint is very Important for strength design of spot welded steed sheet structures. In this paper, the effect of residual stress on the fatigue life of resistance spot weldment was studied. Residual stress fields of weldment were calculated by using thermo elastic plastic finite element analysis and equivalent fatigue stress considering residual stress effect was obtained. And then we predicted fatigue life, which included the effect of the residual stresses and the actual loading stresses. The calculation and experimental results were in good agreement. Therefore, the proposed calculated model can be considered to be sufficiently powerful for the prediction of fatigue life.